Synopsis

Diversity Breeds Conformity

Physics 9, s97
Coupled oscillators in certain networks will—counterintuitively—only move in tandem if each oscillator is different.

Place a row of identical metronomes on a suspended platform and their ticking pendulums will eventually unite in a synchronous swing. This spectacular display occurs because the platform couples the oscillators such that the forces generated by one ticking metronome shift the phase of the tick of the others. A duo of theorists has now discovered a surprising twist on the phenomenon. Takashi Nishikawa and Adilson Motter at Northwestern University, Illinois, devised a model in which a synchronized state can arise—and is only stable—if each oscillator is different from the others.

The researchers’ model consisted of a circle of seven coupled oscillators—each akin to a small ball traveling in an elliptical orbit. When the model parameters describing each oscillator’s motion were identical, the initially synchronized oscillators quickly fell out of step with one another, and their collective movements resembled a Mexican wave traveling around the circle. However, the oscillators could reach a stable synchronized state if the parameters for each oscillator were shifted so that they were no longer the same. This change effectively freezes the traveling wave, causing the oscillators to move in synchrony. Nishikawa and Motter suggest that this so-called asymmetry-induced symmetry could be behind biological symmetries in nature, like in yeast cells, which develop from asymmetric buds.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Subject Areas

Complex Systems

Related Articles

Uncovering Networks in Rainforest Plants
Biological Physics

Uncovering Networks in Rainforest Plants

The spatial arrangement of plants in a rainforest corresponds to a special “critical” state that could be vital for ecosystem robustness.   Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

Liquid Veins Give Ice Its Road-Wrecking Power
Complex Systems

Liquid Veins Give Ice Its Road-Wrecking Power

The unfrozen water-filled channels that crisscross multicrystal ice help feed ice growth, which can lead to fractures in materials such as asphalt and cement. Read More »

More Articles