Synopsis

Making Monopoles with Waves

Physics 9, s117
Magnetic monopoles—theorized particles with only one magnetic pole—might possibly be created by wave-wave collisions.
T. Vachaspati, Phys. Rev. Lett. (2016)

Magnetic monopoles are hypothesized particles that have a magnetic, rather than electric, charge. Despite a long history of nondetections, monopoles continue to be a topic of study because of their possible role in the unification of the fundamental forces. In new theoretical work, Tanmay Vachaspati from Arizona State University, Tempe, considered whether monopoles could be generated through the scattering of waves. The results suggest one might detect monopoles in collisions between high-intensity, circularly polarized light waves.

Monopoles were originally proposed in 1931 by the physicist Paul Dirac, who found they could explain why electric charge is discrete rather than continuous. Later on, theorists discovered that monopoles appeared naturally in so-called grand unified theories (GUTs), which connect electromagnetic and nuclear forces. Many experiments have looked for evidence of magnetic monopoles in high-energy collisions at particle accelerators, but nothing yet has shown up.

Instead of colliding two particles, as in an accelerator, Vachaspati asked what would happen if two waves collided? The waves in this case consist of many force-carrying particles, such as photons and W bosons, that move coherently together. To describe these waves, Vachaspati used a GUT-like model that describes force-carrying particles in terms of fields. In his numerical simulations, two circularly polarized waves in these fields collide head-on. In the wake of these collisions, Vachaspati observed monopoles as cratered peaks in the energy density, and around the peaks the magnetic field was that of an isolated north or south pole. Vachaspati speculates that one might see signals of monopoles in the collisions of high-intensity laser beams, where photon-photon interactions are predicted to occur.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics in Lyon, France.


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles