Synopsis: The Value of Circular Definitions

Methods from statistical physics and graph theory help uncover the structure of human language.
Synopsis figure
D. Levary et al., Phys. Rev. X (2012)

More than one reader has looked up a word in a dictionary, turned to a word used in the definition, only to be eventually pointed back to the original word in a loop of circular definitions. As annoying as this might sometimes be, such loops offer insights into the structure of a language and the expansion of its lexicon. David Levary, of Harvard University, and colleagues report in Physical Review X their use of methods from graph theory and statistical physics to study networks of words in dictionaries and show that creation of these loops is a fundamental mechanism in the growth of a language.

The authors looked at the words in a database called WordNet, treating them as nodes in a graph structure connected by directional links (that is, the link points to words used in the definition). Levary et al. show both theoretically and from watching how nodes are incorporated into the graph that new concepts can only be introduced by adding a loop to the network. They also discovered that words in a given loop often were introduced into the language at about the same time. When the dates of origin of words in a loop differ greatly, it typically indicates a fundamental change in a word’s meaning after its earlier introduction.

Levary et al. further found that new words preferentially attach to existing words with a large number of links pointing to them, a kind of linguistic “rich get richer” behavior. This matches our intuition that new words are defined in terms of well-used common words for better understandability. Taken together, the results suggest that such techniques from physics and graph theory could be a valuable forensic tool for uncovering the deeper workings of human communication and the evolution of language. – David Voss


Announcements

More Announcements »

Subject Areas

Interdisciplinary PhysicsStatistical Physics

Previous Synopsis

Spintronics

Electrons that Take the Heat

Read More »

Related Articles

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Focus: Sensing Delays Control Robot Swarming
Interdisciplinary Physics

Focus: Sensing Delays Control Robot Swarming

A robot group clusters together or disperses based on each robot’s reaction time for sensing light, a finding useful for search-and-rescue missions.   Read More »

Focus: Wikipedia Articles Separate into Four Categories
Interdisciplinary Physics

Focus: Wikipedia Articles Separate into Four Categories

A study of the entire editing history of English Wikipedia shows that the articles cluster into four categories based on how frequently and how aggressively they are edited. Read More »

More Articles