Synopsis

Mid-Infrared Lasers Probe Atomic Structure

Physics 8, s73
Researchers have imaged the structure and the response of atoms and molecules with powerful mid-infrared electric fields.
B. Wolter et al., Phys. Rev. X (2015)

Time-resolved imaging of atoms and molecules is critical for understanding chemical reactions. To acquire such images, researchers typically bombard atoms or molecules with short laser pulses and then measure the emitted electron distribution. These pulses are often provided by near-infrared Ti:sapphire lasers because they are more readily available, but the data are ambiguous to interpret. Now, researchers in Jens Biegert’s group at The Institute of Photonic Sciences (ICFO) in Barcelona have overcome these problems and investigated atomic and molecular structure using a unique setup that combines a mid-infrared laser source with a 3D detector.

The authors study ionization in the strong-field regime, in which the laser pulse distorts the electric field of the atom, allowing an electron to tunnel into the vacuum. The emitted electron accelerates within the strong electric field of the laser before recolliding with its parent ion and either recombining or scattering. Compared to shorter-wavelength pulses, mid-infrared pulses allow electrons to tunnel from the atom at much lower intensities, thus avoiding excessive ionization of the atom. The electric fields of longer-wavelength lasers also accelerate the electrons for more time, which results in a quadratic increase in the electron energy. This provides the ability to probe nuclear rather than solely electronic structure, with unprecedented spatial and energy resolution.

To demonstrate the technique, the researchers shone a 3.1-micrometer laser into a cold, diffuse xenon gas to produce electrons and Xe + and Xe 2+ ions. They measured the arrival times and positions of the emitted electrons using a detector that recorded the charges’ momenta in three dimensions and over six orders of magnitude of energy. In a separate work, Biegert and his team demonstrated that their technique can be used to reveal the spatial arrangement of atoms within acetylene molecules.

This research is published in Physical Review X.

–Katherine Kornei


Subject Areas

Atomic and Molecular PhysicsParticles and Fields

Related Articles

First Glimpses of the Neutrino Fog
Particles and Fields

First Glimpses of the Neutrino Fog

Two dark matter searches report that their detectors have likely recorded neutrinos coming from the Sun—spotting the “neutrino fog” that could imperil future dark matter searches. Read More »

Searching for Dark  Matter Variants of Quarks and Gluons
Particles and Fields

Searching for Dark Matter Variants of Quarks and Gluons

A low-energy signature of physics beyond the standard model fails to appear in proton collisions at the Large Hadron Collider. Read More »

Searching for Axions in Polarized Gas
Particles and Fields

Searching for Axions in Polarized Gas

By exploiting polarized-gas collisions, researchers have conducted a sensitive search for exotic spin-dependent interactions, placing new constraints on a dark matter candidate called the axion. Read More »

More Articles