Focus: Image—Cooperating Lasers Make Topological Defects

Physics 10, 79
A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems.
V. Pal et al., Phys. Rev. Lett. (2017)
Laser bullseye. A circle of ten interacting lasers (left) can cleanly synchronize their phases, as shown by the sharp distinctions between light and dark rings near the center. But using 20 lasers (right) leads to a 20% likelihood for topological defects, where each laser’s phase is offset from its neighbors’, leading to light and dark rings that are less sharply defined.Laser bullseye. A circle of ten interacting lasers (left) can cleanly synchronize their phases, as shown by the sharp distinctions between light and dark rings near the center. But using 20 lasers (right) leads to a 20% likelihood for topological def... Show more

If you cool molten iron slowly, the electron spins can gradually align in a single direction and produce a strong magnetic field. But rapid cooling leads to magnetic domains aligned in various directions, separated by thin boundaries called topological defects. A similar phenomenon may have occurred as the Universe rapidly cooled after the big bang. To study topological defect formation in the lab without the challenges of temperature control, Nir Davidson and colleagues at the Weizmann Institute, Israel, have now developed an experimental model involving interacting laser beams. Imaging the laser intensities allows them to measure the likelihood for topological defects to form for a range of parameters such as the effective “cooling rate.”

To create their experimental model, Davidson and colleagues placed a disk containing between 10 and 30 holes arranged in a circle inside a laser cavity. This “mask” produced a set of laser beams, each emerging from a different hole and leaking a bit into its two neighboring beams, generating interactions. These interactions caused the phase differences among the beams to change over time. The evolution was so rapid that the team simply observed the final state, by recording the resulting pattern of laser intensities.

This state represented the combined effects of about 1000 different longitudinal modes in the cavity—essentially 1000 independent experiments running simultaneously, each with a different set of initial phase relationships among the lasers. In many cases, the beams quickly synchronized their phases, but for some initial phase relationships, the beams would get “stuck” in a state where each beam was a fixed phase away from its neighbors. The team showed that, with ten lasers, there are exactly eight of these topological defect states.

Analysis of the laser patterns allowed the researchers to measure the likelihood of topological defect formation as they varied parameters such as the number of lasers in the ring and the power of the pump light inside the cavity. They found that, with increasing pump power, topological defects became increasingly likely. The team explains this result with simulations showing that the variations in intensity among the beams drop rapidly in time when the pump power is high, whereas low power is associated with slower intensity equilibration. They say that the slower equilibration is the equivalent of a slower cooling rate, and thus, a lower likelihood for topological defects.

This research is published in Physical Review Letters.

–David Ehrenstein

David Ehrenstein is the Focus Editor for Physics.


Subject Areas

OpticsNonlinear Dynamics

Related Articles

Focus: Vortices of Light on the Cheap
Optics

Focus: Vortices of Light on the Cheap

A simple laser setup has spontaneously produced nonuniform polarization patterns called vector vortices. Read More »

Viewpoint: Free-Electron Laser Does the Twist
Plasma Physics

Viewpoint: Free-Electron Laser Does the Twist

Researchers have used a free-electron laser to produce vortex radiation at extreme-ultraviolet wavelengths. Read More »

Focus: Bacteria Form Waveguides
Biological Physics

Focus: Bacteria Form Waveguides

A laser beam sent through a suspension of marine bacteria pulls the organisms into the beam, which focuses the light. Read More »

More Articles