Synopsis

Space Tests of the Equivalence Principle

Physics 10, s133
The MICROSCOPE satellite mission has tested the equivalence principle with unprecedented precision, showing no deviations from the predictions of general relativity.
CNES/D. Ducros

According to general relativity, all bodies should fall at the same rate in a gravitational field, independent of their composition. This “equivalence” principle has so far withstood all experimental tests, but finding violations could provide clues to theories that unify gravity with the other fundamental forces or that explain dark matter or dark energy. In 2016, the National Center for Space Studies (CNES), France’s space agency, launched the MICROSCOPE satellite, which is dedicated to testing the equivalence principle. The mission’s science team, led by researchers at the French Aerospace Lab (ONERA) and at the Côte d'Azur Observatory (OCA), also in France, has now reported its first results. By taking advantage of the quiet environment in space, the mission tested the equivalence principle with record accuracy, finding no deviations from the predictions of relativity.

MICROSCOPE tests the equivalence principle by comparing the acceleration of two masses that follow the same orbit around Earth for a long period of time. The two masses have identical geometries—they are hollow cylinders—but different compositions: the first is made of a platinum alloy, the second of a titanium alloy. Two independent electrostatic feedback circuits apply the forces needed to keep the two masses motionless with respect to the satellite, that is, on the same orbit. A difference in the applied forces would signal a violation of the equivalence principle.

Using data collected over 120 orbits around Earth, the team calculated the dimensionless Eötvös parameter, which quantifies the difference in the two masses’ accelerations and should thus be zero unless the principle is violated. A statistical analysis of the data showed that they are consistent with zero with a precision of 1014—10 times better than previous tests. The collaboration expects to achieve a 1015 precision by the end of the mission in 2018.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Gravitation

Related Articles

Squeezing down the Theory Space for Cosmic Inflation
Gravitation

Squeezing down the Theory Space for Cosmic Inflation

An updated search for primordial gravitational waves has not found a signal, which implies that some popular early Universe models are becoming less viable. Read More »

A Way to Experimentally Test String Theory’s “Fuzzball” Prediction
Gravitation

A Way to Experimentally Test String Theory’s “Fuzzball” Prediction

Simulations reveal the gravitational-wave signal of string theory’s “fuzzy” black holes, a signature that researchers could potentially measure. Read More »

Instability in Black Hole Vibrational Spectra
Gravitation

Instability in Black Hole Vibrational Spectra

A new analysis of black hole vibrational spectra identifies which frequencies are stable to perturbations—information pertinent for gravitational-wave analysis and quantum gravity modeling. Read More »

More Articles