Synopsis

Second Law in an Optical Cavity and a BEC

Physics 11, s120
Physicists observe entropy production in two intermediate-scale quantum systems, indicating that the systems have undergone an irreversible process.  
M. Brunelli/University of Cambridge

In the continuum from quantum to classical, there exists a paradox. Classical machines like heaters cannot run in reverse—and effectively act as refrigerators—without extra energy. Such a scenario would violate the second law of thermodynamics, which states that entropy must always increase. In contrast, the equations of quantum mechanics imply that quantum processes can run in reverse. Currently, researchers are unclear on how to reconcile the two frameworks. To that end, Matteo Brunelli of the University of Cambridge in the UK and colleagues experimentally studied two intermediate-scale quantum systems—a Bose-Einstein condensate made of 100,000 rubidium atoms and an optomechanical cavity weighing less than a millionth of a gram. They placed each system in contact with two heat reservoirs. In both cases, they found that entropy increased as energy flowed in and out of the system. The result indicates that intermediate-scale quantum systems behave irreversibly, like classical machines.

Because entropy production cannot be directly measured, the team first developed a theoretical framework to calculate entropy from energy. Then they used this framework to infer entropy production resulting from the energy exchange between the BEC and two heat reservoirs and between the cavity and two reservoirs. Measuring the energies of the two systems, they found that the entropy increased in both. The team studied these two systems because they both mathematically resemble coupled quantum harmonic oscillators in contact with two heat reservoirs. The team says that, in the future, they plan to monitor the entropy of both systems with finer time resolution in order to observe the systems as they approach steady state.

This research is published in Physical Review Letters.

–Sophia Chen

Sophia Chen is a freelance science writer based in Tucson, Arizona.


Subject Areas

Atomic and Molecular PhysicsQuantum PhysicsStatistical Physics

Related Articles

Quantum Milestones, 1957: Sprouting Parallel Universes
Quantum Physics

Quantum Milestones, 1957: Sprouting Parallel Universes

The many-worlds interpretation of quantum mechanics says that a measurement can cause a splitting of reality into separate worlds. Read More »

Entanglement as the Currency of Quantum Measurement
Quantum Information

Entanglement as the Currency of Quantum Measurement

A powerful framework allows scientists to understand and classify joint quantum measurements—procedures essential for many quantum technologies. Read More »

Nuclear Spins Tamed for Quantum Applications
Quantum Information

Nuclear Spins Tamed for Quantum Applications

Improved methods for using electron spins to sense and control nuclear spins could benefit many quantum technologies. Read More »

More Articles