Synopsis

Universe Preceded by an Antiuniverse?

Physics 11, s147
A new cosmology model suggests that our Universe has a mirror image in the form of an “antiuniverse” that existed before the big bang.
L. Boyle/Perimeter Institute for Theoretical Physics

From a certain vantage point, our Universe looks lopsided. Time runs forward as space expands, and there’s more matter than antimatter. This seems to violate a fundamental symmetry, called CPT symmetry, that says physics is unchanged when time, space, and matter-antimatter are all flipped. To balance out the cosmos, Latham Boyle, Kieran Finn, and Neil Turok from the Perimeter Institute for Theoretical Physics in Canada propose that the big bang was also the starting point of an antiuniverse, where time runs in the opposite direction and antimatter dominates. They show that such a CPT-symmetric model is not only consistent with the known cosmic expansion history but also provides a straightforward explanation for dark matter.

The CPT-symmetric model is an alternative to inflation, which assumes that the Universe went through a brief epoch of exponential growth right after the big bang. This rapid expansion can explain certain cosmological observations, but it requires the existence of additional, still hypothetical quantum fields. Boyle and colleagues show that their proposal can explain early cosmic evolution without inventing new physics. In the CPT-symmetric model, time and space flow continuously across the big bang, and the antiuniverse that emerges in the negative time direction behaves like a mirror reflection of our Universe.

The team has yet to show whether this model can reproduce certain observations that the inflation scenario explains—such as the uniformity of the cosmos on large scales. However, the new model gives a natural explanation for dark matter: a CPT-symmetric Universe would produce large numbers of very massive sterile neutrinos. Such superheavy neutrinos might also be the source of recently observed high-energy cosmic-ray showers (see 18 October 2018 Synopsis).

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Cosmology

Related Articles

Cosmic Ringtones in Pulsar Data?
Cosmology

Cosmic Ringtones in Pulsar Data?

A pulsar survey has detected a potential signal from low-frequency gravitational waves, which theorists are eager to explain. Read More »

The Low-Mass Dark Matter Frontier
Cosmology

The Low-Mass Dark Matter Frontier

Traditional searches for dark matter rely on giant detectors that look for particles heavier than a proton, but sights are turning to smaller experiments with sensitivity to lighter-mass particles. Read More »

Hints of Cosmic Birefringence?
Particles and Fields

Hints of Cosmic Birefringence?

A new analysis of the cosmic microwave background shows that its polarization may be rotated by exotic effects indicating beyond-standard-model physics. Read More »

More Articles