Synopsis

Connecting Noisy Single-Cell Dynamics to Smooth Population Growth

Physics 11, s41
A new theoretical framework connects the exponential growth of a cell population to the stochastic replication of individual cells within the population.
S. Iyer-Biswas/Purdue University

When seen individually, living cells are an erratic lot: They divide, grow, and divide some more at random intervals. But when viewed as a population, the size of the ensemble grows in a smooth, predictable, exponential fashion. Microbiologists have known this for a long time, and yet there is no model that captures the dichotomy of this growth behavior. Now, Srividya Iyer-Biswas, of Purdue University in West Lafayette, Indiana, and colleagues have developed and tested a theoretical framework that could allow researchers to learn about the behavior of individual cells by studying the cell population at large.

Starting from first principles, the authors crafted a model for population behavior in which the cells have “memory,” which is needed because a cell’s history affects its aging process. They then derived and solved a set of equations that relate parameters of a whole cell population—like the rate of population growth—to the temporal distribution of the division times of individual cells.

The authors tested their framework using data from previous experiments on Caulobacter crescentus, a species of fresh-water bacteria widely employed in cell studies. Using single-cell measurements as inputs to their model, they computed the cell-age distributions, showing that they accurately matched the distributions observed in the experiments. They also showed that the model could extract, from a simple measurement of the population growth rate, cell-specific information, such as the mean growth rate of individual cells and the distributions of cell ages and of times between cell divisions. The new framework could simplify studies of other systems that exhibit exponential growth, such as tumors and viral infections.

This research is published in Physical Review X.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Montgomery, Alabama.


Subject Areas

Biological Physics

Related Articles

Solving a Puzzle in Brain Development
Biological Physics

Solving a Puzzle in Brain Development

Scientists may have answered a longstanding question in biophysics: how the brain learns to recognize features in images before a newborn even opens its eyes. Read More »

Turbulence-Surfing Plankton Can Double Their Speed
Fluid Dynamics

Turbulence-Surfing Plankton Can Double Their Speed

Simulations indicate that plankton can gain quicker access to food by riding ascending turbulent ocean currents. Read More »

A Tiny Photonic Nose Captures Odor Fingerprints
Biological Physics

A Tiny Photonic Nose Captures Odor Fingerprints

A bio-inspired detector the size of a US penny can identify the unique odor profiles of different gases, something that could help in detecting food freshness and product counterfeits and in designing new cosmetics. Read More »

More Articles