Synopsis

Simulations Unravel Fibers’ Twisted Topology

Physics 12, s130
How an elastic filament deforms under stress has been quantified in simulations, with implications for the design of artificial muscles.
N. Charles et al., Phys. Rev. Lett. (2019)

Future generations of robots and prosthetic devices will require compact artificial muscles that are powerful and efficient. One way to make such muscles is to twist elastic fibers so that they coil up and shorten in response to a stimulus such as temperature, mimicking the contraction of the real thing. Now, Lakshminarayanan Mahadevan at Harvard University and colleagues have quantified this process by simulating how soft elastic filaments respond when they are strongly stretched and twisted.

Elastic filaments accommodate twisting forces by contorting themselves into a range of configurations. Though the number of possible arrangements might appear endless, for a filament that is anchored at each end—like a muscle—the shapes are actually made up of a combination of three basic forms: The filament stays straight, or it forms a simple corkscrew-like coil called a solenoid, or it becomes a DNA-like loop of intertwined helices called a plectoneme.

In their simulations, the researchers modeled different force regimes to come up with a phase diagram that relates a filament’s final configuration to the forces applied to it during twisting. The team showed that, under strong tension (due to stretching when it’s anchored) and weak twisting, the filament tends to remain straight. Strong twisting without much tension yields plectonemes, and when the filament is strongly stretched and twisted, it adopts a solenoidal form. Near the triple boundary where the phase spaces of the three shapes meet, the filament exhibits a complex combination of all three.

The researchers hope that their results will lead to better designed artificial muscles. Their insights might also be relevant in understanding how polymers can deform when twisted and how magnetic field lines get their topology and geometry.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

MechanicsSoft Matter

Related Articles

How Nature’s Donuts Get Their Wrinkles
Soft Matter

How Nature’s Donuts Get Their Wrinkles

A new model explains the wrinkling patterns seen in nature’s donut-shaped objects, such as those found in jellyfish. Read More »

Why Wetting a Surface Can Increase Friction
Materials Science

Why Wetting a Surface Can Increase Friction

Experiments suggest that hydrogen bonding explains why a wet surface can have nearly twice as much friction as a dry surface. Read More »

Microsphere Pair Converts Microwaves to Light
Interdisciplinary Physics

Microsphere Pair Converts Microwaves to Light

A pair of microspheres can convert microwave signals over a wide frequency range into optical signals, which will be essential for future quantum technologies. Read More »

More Articles