Synopsis

Vessel Dilation Controls Metabolite Flow in the Brain

Physics 12, s136
A new model predicts that the network pattern formed by the brain’s blood vessels plays no role in local metabolite transport, finding instead that vessel dilation is the key.

The brain’s tiny blood vessels form an intricate web-like network that transports metabolites and other substances including nutrients and hormones. But does the network’s specific pattern affect how it performs this vital role? Karen Alim of the Technical University of Munich and colleagues set out to answer this question by developing a theoretical model of the flow of metabolites in a brain-like network. They find that the network’s specific architecture does not matter when it comes to locally varying the supply of metabolites in the brain. Rather, vessel dilation acts as the metabolite “control knob.”

The researchers based their network on the vessel pattern of a rat’s brain. Then they studied how parameters such as the blood’s flow velocity and the metabolite’s uptake rate through the vessel walls governed the transfer of molecules from an individual vessel into the surrounding tissue. The team found that optimal transfer of metabolites occurs when the process is governed by advection. In this regime, when blood flow increases—something that happens when a blood vessel dilates—so too does metabolite transfer, with a 10% dilation leading to a 10% growth in metabolite supply. But surprisingly, Alim says, they found that the local network architecture around a given vessel played no role in increasing metabolite supply along that vessel: all that mattered was by how much the vessel itself dilated.

Changes in blood flow are used as a proxy for neural activity in brain imaging techniques like functional magnetic resonance imaging. Alim says that their model provides a tool to better quantify this process and potentially link the dilation of a single vessel to a spike in local brain activity.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor for Physics.


Subject Areas

Biological PhysicsFluid Dynamics

Related Articles

Toy Robots Mimic Swimming Algae
Statistical Physics

Toy Robots Mimic Swimming Algae

How an alga synchronizes its two flapping cilia to propel itself is revealed in a tabletop experiment with chains of mobile robots. Read More »

Noninvasive Alternative to Cancer Biopsy
Biological Physics

Noninvasive Alternative to Cancer Biopsy

Researchers have developed a cancer-detection method that uses painless sound waves, rather than a torturing needle, to obtain genetic information about a patient’s cancer. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

More Articles