Synopsis

Chirality Turns the Casimir Force Repulsive

Physics 12, s26
The Casimir force between two metal plates can be made repulsive, tunable, and enhanced, if a chiral material is inserted between the plates.

Bring two parallel, uncharged metal plates close together in a vacuum, and they will attract each other. In principle, this Casimir force could also be repulsive, something that is useful in certain applications, like keeping nanoscale objects apart. But for two plates of the same material that mirror each other, a famous “no-go” theorem says this isn’t possible. Now Qing-Dong Jiang of Stockholm University and Frank Wilczek, who holds appointments at the Massachusetts Institute of Technology, Cambridge, and several other institutions, show that the Casimir force can be made repulsive, large, and tunable, by inserting a “chiral” material between the plates.

First identified in 1948, the Casimir force demonstrates that a vacuum is not empty but filled with quantum fluctuations of the electromagnetic field—virtual photons. Jiang and Wilczek observed that the no-go theorem assumes that right- and left-circularly polarized photons behave in same way. So the theorem, they argue, could be circumvented by inserting a material between the plates that breaks this symmetry. This “chiral” material would cause the two types of photons to have different velocities, and, consequently, each would transfer a different amount of momentum to the plates.

The authors calculated the Casimir force between two plates for two types of intervening chiral materials. They found that the amplitude and, crucially, the sign of the force could be adjusted by changing the distance between the plates or changing the strength of an applied magnetic field. This could yield a repulsive Casimir force more than 3 times as strong as the attractive force for the same setup in a vacuum.

This research is published in Physical Review B.

–Nicolas Doiron-Leyraud

Nicolas Doiron-Leyraud is a Corresponding Editor for Physics based in Montreal, Canada.


Subject Areas

Quantum Physics

Related Articles

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

More Articles