Synopsis

How a Pentaquark is Put Together

Physics 12, s66
New Large Hadron Collider data reveal that exotic quark quintets, discovered in 2016, are composites of quark-antiquark mesons and three-quark baryons.  

Particles consisting of either three quarks or quark-antiquark pairs are some of the more familiar members of the standard model, but theory also predicts the existence of other exotic combinations. In 2016, relying on data from the Large Hadron Collider (LHC), the LHCb Collaboration spotted the signature of one long-sought example: a pentaquark, comprising four quarks and one antiquark (see 18 August 2016 Synopsis). Now, the same team reports that pentaquarks are formed by attractive forces between a three-quark baryon and a quark-antiquark meson, binding them loosely into a “molecular” state.

While the original pentaquark detection had high statistical confidence, it wasn’t clear how the component quarks were organized. Quantum chromodynamics—the theory that describes how quarks interact—allows for several possibilities, including a tightly bound quark quintet, composites of various species of baryons and mesons, or even a fleeting interaction between simpler particles and their decay products.

With new LHC results, the team had access to more than 9 times as much data as was used to make the initial pentaquark discovery. The larger dataset revealed that one of the particle types observed three years ago is actually two separate pentaquarks with nearly identical masses. The masses of these particles—along with a newly discovered lower-mass pentaquark—correspond closely with the masses of three candidate baryon-meson pairings.

While it’s possible that these masses could emerge by chance with other pentaquark architectures, the researchers say that such a match would be coincidental—though more experiments are needed before they know for sure.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

Particles and Fields

Related Articles

Three’s Company for Bottom Quarks
Nuclear Physics

Three’s Company for Bottom Quarks

Bottom quarks are increasingly more likely to exist in three-quark states rather than two-quark ones as the density of their environment increases. Read More »

Five New Isotopes Is Just the Beginning
Particles and Fields

Five New Isotopes Is Just the Beginning

Less than a year after its opening, the Facility for Rare Isotope Beams produced five never-before-seen isotopes for observation, a success that researchers say highlights the discovery potential of the facility. Read More »

Repeated Particle Measurements Disagree with Theory—What Now?
Particles and Fields

Repeated Particle Measurements Disagree with Theory—What Now?

The experimental value of the muon’s magnetic moment disagrees with theoretical predictions, but some of those predictions also disagree with each other—a problem theorists are working to resolve. Read More »

More Articles