Synopsis

Microwave Manipulation of Cold Molecules

Physics 13, s100
Interactions between molecules can be tuned using microwaves, a finding that could be leveraged for studying quantum systems.
Z. Yan/Massachusetts Institute of Technology

Ultracold molecules are a promising platform for studying quantum many-body problems and quantum chemistry, as well as for building a quantum computer, among other things. But for all these applications, researchers require methods to manipulate the interactions between molecules. Now Zoe Yan at the Massachusetts Institute of Technology and her colleagues demonstrate a method that uses microwaves to tune the dipolar interaction between two sodium potassium (NaK) molecules [1].

The team cooled a gas of NaK molecules to 560 nK, which placed the molecules in their lowest energy state. In this state the molecules have no dipole moment, and they only notice each other’s presence if two molecules happen to collide, which happens rarely. The team then applied a microwave field to the gas with a frequency close to that of the transition frequency between the molecule’s ground and a particular excited state. This field “dressed” the molecules, stretching out their electric fields such that the field of each molecule roughly resembled that of the magnetic field around a tiny bar magnet. This change induced strong attractive interactions between the molecules, leading to a substantial increase in the molecule collision rate.

Yan says that their method could also be used to induce repulsive interactions between molecules. Such interactions could shield the system from two-body collisions, events that can significantly limit the lifetime of molecular gases. The molecules’ interactions could also be tuned to create exotic forms of matter using ultracold gases, such as topological superfluids.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is the Deputy Editor of Physics Magazine.

References

  1. Z. Z. Yan et al., “Resonant dipolar collisions of ultracold molecules induced by microwave dressing,” Phys. Rev. Lett. 125, 063401 (2020).

Subject Areas

Atomic and Molecular Physics

Related Articles

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Ejected Electron Slows Molecule’s Rotation
Chemical Physics

Ejected Electron Slows Molecule’s Rotation

Sometimes a rotating molecule can transition to a new state only if an electron carries away some of the molecule’s angular momentum. Read More »

Probing the Rotational Doppler Effect with a Single Ion
Atomic and Molecular Physics

Probing the Rotational Doppler Effect with a Single Ion

A light beam with orbital angular momentum can produce the rotational analog of the Doppler effect on an ion. Read More »

More Articles