Synopsis

Phonons Are Key in Strained Superconductors

Physics 13, s125
Substrate-induced strain in RuO2 thin films generates the kind of phonons that promote superconductivity.
M. Uchida et al. [1]

Recent technological advances have allowed researchers to make exceptionally high-quality, thin, metal oxide films, spurring new experiments. One such experiment revealed superconducting behavior in a roughly 30-nm-thick layer of ruthenium oxide ( RuO2)—but only when it was grown on a suitably oriented titanium dioxide ( TiO2) substrate. Now, Masaki Uchida at the University of Tokyo and colleagues have identified the cause of this behavior [1]. Their finding could provide a starting point for inducing superconductivity in other metal oxide films.

When a thin metal oxide film is grown on a substrate with different lattice parameters, the mismatch creates stresses that deform the bonds between the film’s atoms. This process was known to promote superconductivity in RuO2, but the mechanism behind this promotion was unclear. To investigate, the Tokyo team grew RuO2 thin films on either a TiO2 substrate or a magnesium fluoride ( MgF2) substrate with various crystal orientations and then measured the RuO2’s conductivity as the films were cooled to 0.4 K.

The team found that only one sample superconducted: the RuO2 film grown on 110-oriented TiO2, which started superconducting at 1.7 K. In that sample, the lattice mismatch squeezed a specific metal-oxygen bond in the RuO2’s crystal structure. Using density-functional calculations, the researchers found that the shortening of this bond lowered the frequency of phonons traveling along the unit cell’s long axis. Such “soft” phonons are known to deform the ion lattice, promoting superconductivity in RuO2 by creating the electronic environment necessary for electrons to pair up and propagate without resistance. But, the researchers say, why phonons traveling in this particular direction are so important remains unclear.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics based in Bristol, UK.

References

  1. M. Uchida et al., “Superconductivity in uniquely strained RuO2 films,” Phys. Rev. Lett. 125, 147001 (2020).

Subject Areas

SuperconductivityCondensed Matter Physics

Related Articles

Real-Time Monitoring of Nanoscale Polarization Switching
Materials Science

Real-Time Monitoring of Nanoscale Polarization Switching

Researchers have visualized the nanoscale jumps in a ferroelectric’s polarization that are thought to play a key role in how well some ferroelectric devices function. Read More »

Rising Above the Quantum Noise
Condensed Matter Physics

Rising Above the Quantum Noise

The control of molecular-level quantum effects in artificial photosynthetic membranes is a powerful tuning knob for optimizing long-range energy transport, according to a theoretical study. Read More »

Spreading Frost Under the Microscope
Condensed Matter Physics

Spreading Frost Under the Microscope

A new imaging technique reveals the effects of humidity on the spread of frost across a micropatterned surface. Read More »

More Articles