Synopsis

Electrical Control of the “Valley”

Physics 13, s133
Researchers show that they can electrically switch which energy valley electrons occupy in a solid, a key step toward enabling a “valleytronics” approach to information applications.
L. Li/Cornell University

The future of data encoding may lie with a new paradigm known as valleytronics. While traditional electronic devices manipulate the charge of electrons, those that use valleytronics employ the electrons’ orbital angular momentum. In a new study, Kin Fai Mak of Cornell University and colleagues report achieving such control via electrical inputs, an elusive goal deemed essential for high-speed, low-cost devices [1].

The “valley” in valleytronics refers to two dips that appear in plots of a solid’s energy bands at different electron momenta. By putting all the electrons into one valley or the other, those two dips could be used to represent the two values of bits (0 and 1) in information applications. While this “valley sorting” is unresponsive to electrical fields, it can be influenced by changes in ambient magnetism. Mak and collaborators found a way to control the valley populations in one material by electrically manipulating the magnetism of an adjacent material.

The team laid a single-atom-thick sheet of the semiconductor tungsten diselenide ( WSe2), a material whose energy landscape has valleys, atop a few atomic layers of chromium triiodide ( CrI3), a material whose magnetism can be electrically altered. They then changed the voltage across the CrI3 layers and measured the population of the WSe2 valleys using a technique that monitored the spin direction of light that the WSe2 emitted when illuminated by a laser. They found that the direction changed when the voltage was applied, indicating a switch in the semiconductor’s filled valley. The CrI3 layer is magnetic only at around 60 K, so the team says that their next step is to find a material that would allow valley sorting at room temperature.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Arlington, Virginia.

References

  1. L. Li et al., “Electrical switching of valley polarization in monolayer semiconductors,” Phys. Rev. Materials 4, 104005 (2020).

Subject Areas

OptoelectronicsMaterials Science

Related Articles

Why Wetting a Surface Can Increase Friction
Materials Science

Why Wetting a Surface Can Increase Friction

Experiments suggest that hydrogen bonding explains why a wet surface can have nearly twice as much friction as a dry surface. Read More »

Cooking with Phason Gas
Condensed Matter Physics

Cooking with Phason Gas

Heat-transport measurements and neutron-scattering spectroscopy probe a form of thermal conduction based on excitations called phasons. Read More »

Dark Matter Goes Down to the Wire
Materials Science

Dark Matter Goes Down to the Wire

A superconducting nanowire detector places new bounds on how a hypothetical lightweight dark matter particle interacts with electrons. Read More »

More Articles