Synopsis

Vetting Neutral Nitrogen Vacancies

Physics 13, s142
New experiments characterize the excitation levels of electrically neutral nitrogen-vacancy centers, information needed for quantum information applications.
QuTech/Delft University of Technology

Nitrogen-vacancy centers are small defects in diamond crystals, which can perform many functions in quantum information and sensing technologies (see Q&A: Defects Wanted; Apply Here). Negatively charged ( NV) centers—those with one extra electron—have proven to be the most useful, but the defects also come in a less-studied neutral state ( NV0). Now, Simon Baier from Delft University of Technology in the Netherlands and his colleagues have performed a series of optical spectroscopy experiments that reveal the excitation levels in NV0centers, knowledge that could improve the applicability of nitrogen-vacancy centers [1].

Like an atom, nitrogen-vacancy centers have several bound electrons, which can reside in one of many orbitals. The NVcenter—with six electrons—is prized for its long-lived spin states that can store quantum information. However, under laser excitation an NVcenter can spontaneously lose an electron and switch to NV0, resulting in a loss of signal and the decoherence of nearby qubits. Those problems could be mitigated if the NV0center’s spin properties were better understood.

NV0 centers rapidly undergo transitions, making it difficult to identify the initial and final states of a given transition. Baier and colleagues overcome this problem by developing a technique that can carefully place a single nitrogen-vacancy center in a well-defined state. By monitoring the light emission from this targeted center, they showed that they could clearly identify transitions involving orbital-state changes from those involving spin-state changes. They also measured how the spin states evolve, both in the dark and under laser illumination. They then used this information to demonstrate a low-error (high-fidelity) readout technique of the NV0 spin state that could be used in future qubit applications.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.

References

  1. S. Baier et al., “Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 125, 193601 (2020).

Subject Areas

Quantum InformationSemiconductor Physics

Related Articles

Demonstrating Quantum Communication Under Realistic Conditions
Quantum Information

Demonstrating Quantum Communication Under Realistic Conditions

Researchers achieve secure “real-world” quantum communication along 428 km of optical fiber, the longest terrestrial distance outside of a lab setting. Read More »

Quantum Machine Learning for Data Classification
Quantum Information

Quantum Machine Learning for Data Classification

Quantum machine-learning techniques speed up the task of classifying data delivered by a small network of quantum sensors. Read More »

Microwave Squeezing Beyond 3 dB
Quantum Physics

Microwave Squeezing Beyond 3 dB

Researchers suppress measurement fluctuations of microwaves in a cavity to below that of vacuum. Read More »

More Articles