Synopsis

Vetting Neutral Nitrogen Vacancies

Physics 13, s142
New experiments characterize the excitation levels of electrically neutral nitrogen-vacancy centers, information needed for quantum information applications.
QuTech/Delft University of Technology

Nitrogen-vacancy centers are small defects in diamond crystals, which can perform many functions in quantum information and sensing technologies (see Q&A: Defects Wanted; Apply Here). Negatively charged ( NV) centers—those with one extra electron—have proven to be the most useful, but the defects also come in a less-studied neutral state ( NV0). Now, Simon Baier from Delft University of Technology in the Netherlands and his colleagues have performed a series of optical spectroscopy experiments that reveal the excitation levels in NV0centers, knowledge that could improve the applicability of nitrogen-vacancy centers [1].

Like an atom, nitrogen-vacancy centers have several bound electrons, which can reside in one of many orbitals. The NVcenter—with six electrons—is prized for its long-lived spin states that can store quantum information. However, under laser excitation an NVcenter can spontaneously lose an electron and switch to NV0, resulting in a loss of signal and the decoherence of nearby qubits. Those problems could be mitigated if the NV0center’s spin properties were better understood.

NV0 centers rapidly undergo transitions, making it difficult to identify the initial and final states of a given transition. Baier and colleagues overcome this problem by developing a technique that can carefully place a single nitrogen-vacancy center in a well-defined state. By monitoring the light emission from this targeted center, they showed that they could clearly identify transitions involving orbital-state changes from those involving spin-state changes. They also measured how the spin states evolve, both in the dark and under laser illumination. They then used this information to demonstrate a low-error (high-fidelity) readout technique of the NV0 spin state that could be used in future qubit applications.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics Magazine based in Lyon, France.

References

  1. S. Baier et al., “Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 125, 193601 (2020).

Subject Areas

Quantum InformationSemiconductor Physics

Related Articles

Realizing the Einstein-Podolsky-Rosen Paradox for Atomic Clouds
Quantum Information

Realizing the Einstein-Podolsky-Rosen Paradox for Atomic Clouds

A new demonstration involving hundreds of entangled atoms tests Schrödinger’s interpretation of Einstein, Rosen, and Podolsky’s classic thought experiment. Read More »

Quantum Repeater Goes the Distance
Atomic and Molecular Physics

Quantum Repeater Goes the Distance

A quantum repeater based on trapped ions allows the transmission of entangled, telecom-wavelength photons over 50 km. Read More »

Proof That a Complex Quantum Network Is Truly Quantum
Quantum Information

Proof That a Complex Quantum Network Is Truly Quantum

Researchers prove the fully nonclassical nature of a three-party quantum network, a requirement for developing secure quantum communication technologies. Read More »

More Articles