Vetting Neutral Nitrogen Vacancies

Physics 13, s142
New experiments characterize the excitation levels of electrically neutral nitrogen-vacancy centers, information needed for quantum information applications.
QuTech/Delft University of Technology

Nitrogen-vacancy centers are small defects in diamond crystals, which can perform many functions in quantum information and sensing technologies (see Q&A: Defects Wanted; Apply Here). Negatively charged ( NV) centers—those with one extra electron—have proven to be the most useful, but the defects also come in a less-studied neutral state ( NV0). Now, Simon Baier from Delft University of Technology in the Netherlands and his colleagues have performed a series of optical spectroscopy experiments that reveal the excitation levels in NV0centers, knowledge that could improve the applicability of nitrogen-vacancy centers [1].

Like an atom, nitrogen-vacancy centers have several bound electrons, which can reside in one of many orbitals. The NVcenter—with six electrons—is prized for its long-lived spin states that can store quantum information. However, under laser excitation an NVcenter can spontaneously lose an electron and switch to NV0, resulting in a loss of signal and the decoherence of nearby qubits. Those problems could be mitigated if the NV0center’s spin properties were better understood.

NV0 centers rapidly undergo transitions, making it difficult to identify the initial and final states of a given transition. Baier and colleagues overcome this problem by developing a technique that can carefully place a single nitrogen-vacancy center in a well-defined state. By monitoring the light emission from this targeted center, they showed that they could clearly identify transitions involving orbital-state changes from those involving spin-state changes. They also measured how the spin states evolve, both in the dark and under laser illumination. They then used this information to demonstrate a low-error (high-fidelity) readout technique of the NV0 spin state that could be used in future qubit applications.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


  1. S. Baier et al., “Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 125, 193601 (2020).

Subject Areas

Quantum InformationSemiconductor Physics

Related Articles

Qubits Could Act as Sensitive Dark Matter Detectors
Quantum Physics

Qubits Could Act as Sensitive Dark Matter Detectors

A detector made from superconducting qubits could allow researchers to search for dark matter particles 1000 times faster than other techniques can. Read More »

A Chiral Magnet Induces Vortex Currents in Superconductors
Condensed Matter Physics

A Chiral Magnet Induces Vortex Currents in Superconductors

Control over vortices that arise in magnet-superconductor heterostructures could lead to qubits that are immune to the effects of their environment. Read More »

A Noninvasive Quantum Thermometer

A Noninvasive Quantum Thermometer

A quantum dot can measure ultracold temperatures without the need for direct electrical connections to the outside world. Read More »

More Articles