Synopsis

A 2D Metal Compound Shows a Superconducting Surprise

Physics 13, s152
A cesium-rich “kagome” metal is both a topological insulator and a superconductor, making it a compelling material for future quantum technologies.
B. Ortiz et al. [1]

For quantum computing applications, a topological superconductor is the stuff of dreams. Such a material could protect qubits from the environment, leading to an extremely long coherence time. Researchers think that a new class of materials called kagome metals might be topological superconductors, as they have topological electronic structures, and they can host superconducting correlated-electron phenomena. But researchers have struggled to simultaneously realize both properties in these metals. Now Brenden Ortiz of the University of California, Santa Barbara, and colleagues have synthesized a superconducting kagome metal that has topologically protected surface states [1]. Their material provides a platform for exploring how superconductivity emerges from electronic structures in topological materials.

Ortiz and his colleagues synthesized a cesium-rich material that forms a layered crystalline metal. The lattice structure of each layer resembles that of a Japanese basket-weaving pattern known as kagome. Taking a 2D thin film of this material, they characterized its electronic structure using spectroscopy measurements and calculations, revealing that it supports edge or surface states that act as one-way conductance channels. They also probed the metal’s magnetization, heat capacity, and electrical resistivity, showing that it starts superconducting at 2.5 K. That’s surprising, the researchers say, because until now, only 3D versions of kagome metals have demonstrated superconductivity.

The researchers note that the superconducting temperature of this cesium-rich metal does not make it a sought-after high-temperature superconductor. The superconductivity also has no obvious connection to any topological feature. Despite those limitations, they still think that the metal presents a model material for probing how superconducting electrons and surface-state electrons influence each other’s behavior.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.

References

  1. B. Ortiz et al., “CsV3Sb5: A Z2 topological kagome metal with a superconducting ground state,” Phys. Rev. Lett. 125, 247002 (2020).

Subject Areas

Condensed Matter Physics

Related Articles

Spin–Orbit-Coupled Electrons May Form Superconducting Pairs
Strongly Correlated Materials

Spin–Orbit-Coupled Electrons May Form Superconducting Pairs

A previously neglected spin–orbit-coupling effect could be strong enough to engender unconventional superconductivity in certain materials. Read More »

Toward a Second Law for Living Systems
Biological Physics

Toward a Second Law for Living Systems

A new theory related to the second law of thermodynamics describes the motion of active biological systems ranging from migrating cells to traveling birds. Read More »

Mapping Spin Waves with a Strobe Light
Condensed Matter Physics

Mapping Spin Waves with a Strobe Light

A method for imaging spin waves in magnetic materials uses flash-like intensity variations in a laser beam to capture the wave motion at specific moments in time. Read More »

More Articles