Synopsis

Measuring Bird Size Using Song

Physics 13, s31
The physics of how the white-tipped plantcutter creates its raspy cry reveals how a bird’s physical characteristics can link to its song.
pablo-rodriguez_merkel/iStock/Getty Images

There are two types of birds, as far as researchers who study birdsong are concerned: “vocal learners” that master their songs by copying other members of their species, and “nonlearners” that figure their songs out independently using both instinct and physical capability. Researchers who study the physics of birdsong want to understand whether the properties of a nonlearner’s songs depend on the bird’s physical characteristics, like body size. Now, Gabriel Mindlin of the University of Buenos Aires in Argentina and colleagues develop a model that could allow researchers to deduce from its cry the body size of the white-tipped plantcutter, a species of bird native to South America.

Most birds vocalize the same way that humans do, by moving air through their vocal folds. This moving air oscillates the folds, creating sound. Mindlin and colleagues propose that the white-tipped plantcutter instead presses its vocal folds shut so that air builds up behind them. When there’s enough pressure, the folds open suddenly with an explosive pulse of energy. That pulse then resonates inside the bird in what’s called its oroesophageal cavity. Their model shows that the frequency of the resulting birdcall depends on the fundamental frequency of the cavity, which is linked to its size. Thus, the team says, researchers may be able to determine a bird’s overall size from its song.

So far, the white-tipped plantcutter is the only species known to create birdsong using such sharp pulses of air. But Mindlin says that he expects that other species might use the same mechanism.

This research is published in Physical Review Letters.

–Erika K. Carlson

Erika K. Carlson is a Corresponding Editor for Physics based in Brooklyn, New York.


Subject Areas

Biological PhysicsInterdisciplinary Physics

Related Articles

Toward a Second Law for Living Systems
Biological Physics

Toward a Second Law for Living Systems

A new theory related to the second law of thermodynamics describes the motion of active biological systems ranging from migrating cells to traveling birds. Read More »

Vaccination Strategy Targets Fast-Changing Pathogens
Interdisciplinary Physics

Vaccination Strategy Targets Fast-Changing Pathogens

A theory outlines an immunization protocol that fosters powerful antibodies while avoiding immune-cell death. Read More »

Simulations Suggest Flu Virus Vulnerability
Biological Physics

Simulations Suggest Flu Virus Vulnerability

Studies of influenza A’s unusual propulsion strategy suggest that drugs could target a critical protein. Read More »

More Articles