Synopsis

Measuring Bird Size Using Song

Physics 13, s31
The physics of how the white-tipped plantcutter creates its raspy cry reveals how a bird’s physical characteristics can link to its song.
pablo-rodriguez_merkel/iStock/Getty Images

There are two types of birds, as far as researchers who study birdsong are concerned: “vocal learners” that master their songs by copying other members of their species, and “nonlearners” that figure their songs out independently using both instinct and physical capability. Researchers who study the physics of birdsong want to understand whether the properties of a nonlearner’s songs depend on the bird’s physical characteristics, like body size. Now, Gabriel Mindlin of the University of Buenos Aires in Argentina and colleagues develop a model that could allow researchers to deduce from its cry the body size of the white-tipped plantcutter, a species of bird native to South America.

Most birds vocalize the same way that humans do, by moving air through their vocal folds. This moving air oscillates the folds, creating sound. Mindlin and colleagues propose that the white-tipped plantcutter instead presses its vocal folds shut so that air builds up behind them. When there’s enough pressure, the folds open suddenly with an explosive pulse of energy. That pulse then resonates inside the bird in what’s called its oroesophageal cavity. Their model shows that the frequency of the resulting birdcall depends on the fundamental frequency of the cavity, which is linked to its size. Thus, the team says, researchers may be able to determine a bird’s overall size from its song.

So far, the white-tipped plantcutter is the only species known to create birdsong using such sharp pulses of air. But Mindlin says that he expects that other species might use the same mechanism.

This research is published in Physical Review Letters.

–Erika K. Carlson

Erika K. Carlson is a Corresponding Editor for Physics based in Brooklyn, New York.


Subject Areas

Biological PhysicsInterdisciplinary Physics

Related Articles

Assessing the Brain at a Range of Frequencies
Biological Physics

Assessing the Brain at a Range of Frequencies

A new frequency-based analysis of recordings from neurons in the brain may give insight into brain pathologies such as Parkinson’s disease. Read More »

Information Flow in Molecular Machines
Biological Physics

Information Flow in Molecular Machines

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells. Read More »

Analysis of Zebrafish Smackdown
Biological Physics

Analysis of Zebrafish Smackdown

By observing two fighting fish, researchers have decoded the repertoire of trajectories and body postures used in the interaction—and identified the winner. Read More »

More Articles