Synopsis

Solving a Magnetic Puzzle

Physics 13, s42
Spectroscopic measurements explain why a van der Waals ferromagnet displays different magnetic behavior in its layered and bulk forms.
Xiangpeng Luo/University of Michigan

Van der Waals materials—crystals made of atomic layers held together by weak van der Waals forces—exhibit unique magnetic properties that could be harnessed in spintronic devices. These properties can change dramatically depending on how many layers the crystal comprises—a behavior that current models of magnetism in these materials cannot explain. Now, a team led by Liuyan Zhao of the University of Michigan and Rui He of Texas Tech University has solved this puzzle for one such compound, chromium triiodide (CrI3), using spectroscopic measurements.

CrI3 monolayers were recently discovered to be ferromagnetic. This finding was remarkable, since ferromagnetism was thought to be suppressed in two dimensions. But samples comprising two or a few layers of the same material turned out to be antiferromagnetic, a behavior difficult to reconcile with that of bulk CrI3, which is ferromagnetic.

Zhao, He, and their colleagues studied the properties of bulk CrI3 by measuring how the sample shifted the wavelength of incident polarized laser light. This technique allowed them to probe specific phonons—vibrations that reveal the crystal structure—and magnons—spin waves that reveal the spin arrangement in the solid. They found that bulk CrI3 does not have a simple ferromagnetic structure but is instead in a mixed state. Like few-layer films, CrI3 layers closest to the surface have an antiferromagnetic arrangement: atomic spins are aligned within each layer, but the orientation flips from one layer to the next. Layers further from the surface, however, are ferromagnetic, explaining the material’s bulk properties. The researchers say that understanding the material’s magnetic properties may help to find ways to control them via external stimuli, such as strain or pressure.

This research is published in Physical Review X.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

MagnetismCondensed Matter PhysicsMaterials Science

Related Articles

Simulations Reveal Quantum Tunneling Events in Glass
Materials Science

Simulations Reveal Quantum Tunneling Events in Glass

In a glass, the freedom of atoms to move by quantum tunneling depends on how fast the glass was initially formed. Read More »

Postponing Heat Death in Periodically Driven Systems
Condensed Matter Physics

Postponing Heat Death in Periodically Driven Systems

An exponential suppression of heating has been observed in a periodically driven optical lattice, opening up an opportunity to engineer new states of matter. Read More »

Spin Current in an Antiferromagnet is Coherent
Condensed Matter Physics

Spin Current in an Antiferromagnet is Coherent

Experiments show that a spin current moves as a coherent evanescent spin wave through an antiferromagnet layer sandwiched between two ferromagnets. Read More »

More Articles