Synopsis

A Ferroelectric on the Edge

Physics 13, s49
A 2D electron gas sandwiched between a metal and a metal oxide exhibits “impossible” ferroelectric-like behavior.

The material strontium titanate, or STO for short, is a jack-of-all-trades: depending on how it is doped, it behaves as an insulator, a metal, a superconductor, or a ferroelectric. Moreover, when undoped (insulating) STO is layered with other materials, it can host a thin conductive interface, called a two-dimensional electron gas (2DEG). Julien Bréhin, from the French National Center for Scientific Research (CNRS) in Paris, and his colleagues have now induced a 2DEG using a ferroelectric form of STO. Surprisingly, the thin conductor exhibits a kind of ferroelectric memory effect in the way that it switches between two different resistance states.

As previous work has shown, doping STO with small amounts of calcium can transform it into a ferroelectric, which is a material that can retain a permanent electric polarization—like the permanent magnetization in a ferromagnet. Earlier research also demonstrated that depositing aluminum on pure STO can induce a 2DEG at the interface between the two materials.

For their experiment, Bréhin and colleagues combined both techniques, depositing an aluminum layer on top of calcium-doped STO. When they applied a variable electric field to the system, they witnessed the 2DEG at the interface cycling between two states—one with high resistance, the other with low resistance. Like in ferroelectrics, it was the electric-field history that determined which state the 2DEG occupied. This memory effect is a signature of electrical polarization in the 2DEG, which seems impossible given that free electrons in the two-dimensional conductor should move around and cancel any internal polarization. The team says that further study is needed to understand how polarization may be occurring in this two-dimensional system.

This research is published in Physical Review Materials.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Materials ScienceCondensed Matter Physics

Related Articles

Sustainable Plastics Inspired by Nature
Interdisciplinary Physics

Sustainable Plastics Inspired by Nature

Plant-based plastics offer a sustainable alternative to traditional petrochemical plastics. Scientists and engineers are making the shift easier by fine-tuning the structure and function of these biomaterials while also developing better processing techniques. Read More »

A Twist in Topological Wisdom
Condensed Matter Physics

A Twist in Topological Wisdom

New theoretical predictions overthrow the assumption that a material’s bulk topological properties are linked to the same properties at its surface.  Read More »

The Rich Inner Life of the Hydrogen Chain
Condensed Matter Physics

The Rich Inner Life of the Hydrogen Chain

A one-dimensional chain of hydrogen atoms displays a wide variety of many-body effects—suggesting that the chain can be a useful model system for condensed-matter physics. Read More »

More Articles