Synopsis

Follow the Crowd to Find a Smell

Physics 13, s91
Simulations show that by trusting their neighbors and following their own “noses,” a swarm of fictitious organisms inspired by moths can quickly find a smell’s source in turbulent air.
NeagoneFo/iStock/Getty Images

Moths can track down smells, such as the scent released by a potential mate. This activity is usually an individual behavior. But Antonio Celani of the Abdus Salam International Centre for Theoretical Physics in Italy and colleagues, who study animal behavior, wondered if the collective behavior of swarming might let moth-like agents search more efficiently. Modeling a swarm of fictitious organisms that track smells like moths do and that flock like birds, they found that the organisms could effectively locate an odor-emitting object in a realistic turbulent environment, like air, when they trusted their neighbors’ noses over their own.

Following a smell through turbulent air can be challenging, as odor particles come in disparate bursts from various directions. This issue causes moths to take indirect, zigzagging paths to their destinations, as they track smells, in part, by heading upwind of the most recent smell puff they encountered. Celani and colleagues wondered if swarms might be better smell-seekers than individuals, since multiple organisms could track the odor. For that, individuals would need to “trust” their neighbors and follow them some of the time.

To test this idea, the researchers modeled organisms that followed both their own noses and their neighbors’ flight patterns. Varying the degree to which each individual trusted the others, they found that the swarm most efficiently located a source when individuals trusted their neighbors’ senses over their own about 80% of the time. The researchers note that the finding likely won’t provide insights into how real animals locate smelly objects, since the modeled organisms are fictitious. They do, however, anticipate that their model could inspire designs for robots that sniff out bombs or that detect toxic gas leaks.

This research is published in Physical Review E.

–Erika K. Carlson

Erika K. Carlson is a Corresponding Editor for Physics based in New York City.


Subject Areas

Biological PhysicsInterdisciplinary Physics

Related Articles

Noninvasive Alternative to Cancer Biopsy
Biological Physics

Noninvasive Alternative to Cancer Biopsy

Researchers have developed a cancer-detection method that uses painless sound waves, rather than a torturing needle, to obtain genetic information about a patient’s cancer. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

More Articles