Synopsis

The Strange Shapes of Cooling Droplets

Physics 14, s10
Researchers uncover the mechanism that makes some oil droplets change shape from spheres to icosahedrons to flattened plates.
I. García-Aguilar/Leiden Univ.; E. Sloutskin/Bar-Ilan Univ.

Strange things occur when a droplet made of an alkane oil and surfactants is placed in water and cooled. The alkane and surfactant molecules form a solid shell, separating the oil from the surrounding water. Then, as the temperature drops, the shape of this shell changes from a sphere to a 20-sided icosahedron to a flattened hexagonal plate. Now, Ireth García-Aguilar of Leiden University in the Netherlands and colleagues have developed a detailed model to explain these transformations [1].

Previously, other researchers had proposed that the icosahedral forms are caused by some interplay between surface tension and topological defects in the droplet’s shell. This mechanism has been observed in some viruses, whose shells can morph from spherical into icosahedral shapes. But this explanation fails for emulsion droplets such as those studied by García-Aguilar and colleagues. For viruses, larger shells tend to be icosahedral, while smaller ones tend to be spherical. For emulsion droplets, the opposite seems to be true: Smaller shells change shape more readily as temperatures drop, while larger shells remain spherical for longer.

In a new model of the phenomenon, García-Aguilar and colleagues included surface tension and defects (as previous models did), but they added two new factors—gravity and a property called spontaneous curvature, which accounts for any preferred curvature possessed by the molecules forming the shell. With these additional ingredients, they found that their model matches observations of emulsion droplets fairly well, including the size-dependence of the shape transitions. Gravity was key in explaining why the droplets, when flattened into plates, always seem to face the same way under a microscope—they flatten in the direction of Earth’s gravity, minimizing their energy.

–Erika K. Carlson

Erika K. Carlson is a Corresponding Editor for Physics based in New York City.

References

  1. I. García-Aguilar et al., “Faceting and flattening of emulsion droplets: A mechanical model,” Phys. Rev. Lett. 126, 038001 (2021).

Subject Areas

Soft Matter

Related Articles

Prizes for Videos Featuring Mickey Mouse and Laptop Cables
Fluid Dynamics

Prizes for Videos Featuring Mickey Mouse and Laptop Cables

The winners of the third annual “Gallery of Soft Matter” competition included posters portraying robotic leaves and cannibalizing droplets and a video with what might be Steamboat Willie’s first appearance at the APS March Meeting. Read More »

Smooth Control of Active Matter
Soft Matter

Smooth Control of Active Matter

A theoretical study finds that the most energy-efficient way to control an active-matter system is to drive it at finite speed—unlike passive-matter systems. Read More »

Droplets Dance After They Merge
Soft Matter

Droplets Dance After They Merge

Water droplets can exhibit complex collective motions when they condense on a thin oil film. Read More »

More Articles