Synopsis

The Geometry of Basket Weaving

Physics 14, s112
Researchers teamed up with an artist to tweak a popular basket-weaving approach, finding a way to weave ribbons to produce any curvature desired.  
C. Baek et al. [1]

In traditional basket making, one common approach entails weaving ribbons together into a tridirectional array, called triaxial weaving. But the usual way of implementing this method can only produce a limited number of basket geometries. Changyeob Baek, then at the Massachusetts Institute of Technology and the Swiss Federal Institute of Technology Lausanne, and colleagues have shown that using curved ribbons in place of the straight ones typically used in this weaving pattern allows for a much broader range of curvatures and woven shapes [1]. Because the triaxial weave pattern also occurs in contexts such as molecular lattices, understanding the possible geometries of this pattern could lead to discoveries in fields as varied as biology, chemistry, and materials science.

In triaxial weaving, ribbons are laced together to create arrays of hexagons. But a regular array of hexagons, when made from straight ribbons, produces only a flat plane. To introduce curvature, basket makers place topological defects into their arrays by swapping a hexagon with a pentagon or heptagon. However, these defects can only produce certain discrete degrees of curvature in the straight-ribboned weaves, allowing a limited range of shapes.

Working with an artist who specializes in woven creations, Baek and colleagues investigated a variety of structures woven from ribbons with in-plane curvature. From experiments and simulations, they found that tuning the curvature of the ribbons allowed them to achieve a continuous range of woven curvatures, producing shapes not possible with the traditional straight-ribboned approach. The team also found that different combinations of ribbon geometries and layouts can produce the same shapes; the next step, they say, is to investigate which combinations are the optimal ways to weave specific shapes.

–Erika K. Carlson

Erika K. Carlson is a Corresponding Editor for Physics based in New York City.

References

  1. C. Baek et al., “Smooth triaxial weaving with naturally curved ribbons,” Phys. Rev. Lett. 127, 104301 (2021).

Subject Areas

Interdisciplinary PhysicsMaterials Science

Related Articles

Perfect Cones Are as Weak as They Seem
Mechanics

Perfect Cones Are as Weak as They Seem

The early failure of thin-walled cones under compression was thought to arise mainly from the presence of imperfections. A new model suggests otherwise.   Read More »

In a Twist, Composite Fermions Form and Flow without a Magnetic Field
Materials Science

In a Twist, Composite Fermions Form and Flow without a Magnetic Field

Certain twisted semiconductor bilayers are predicted to host a Fermi liquid of composite fermions—remarkably, without an applied magnetic field. Read More »

A Fine Probe of Layer Stacking
Condensed Matter Physics

A Fine Probe of Layer Stacking

The combination of nuclear magnetic resonance with first-principles calculations uncovers the stacking patterns of layers of a quantum material—information that could enable a deeper understanding of the material’s behavior. Read More »

More Articles