Synopsis

Predicting the Limits of Atomic Nuclei

Physics 14, s4
First-principles calculations predict the properties of nearly 700 isotopes between helium and iron, showing which nuclides can exist and which cannot.
koya979/adobe.stock.com

Among the vast number of possible nuclear isotopes, very few are stable. Stray above a certain mass number—by adding neutrons to an element in the Periodic Table—and eventually the corresponding nucleus can’t exist because it leaks nucleons. The neutron “dripline” that defines this limit of existence has been discovered experimentally for elements up to neon (see Viewpoint: Reaching the Limits of Nuclear Existence). Now, using a first-principles theoretical approach, Ragnar Stroberg from the University of Washington, Seattle, and colleagues have predicted the map of nuclear existence as far as iron [1].

This study is not the first attempt to explore the extreme neutron-rich region of the nuclear landscape theoretically: a previous investigation used approximative methods to predict about 7000 bound nuclides between helium and element 120. Stroberg and colleagues, however, obtained a first map based on ab initio nuclear theory. Starting from two- and three-nucleon interactions, they solved the many-body Schrödinger equation to predict properties of nuclei up to iron. To reliably treat light- to medium-mass elements, they combined a novel ab initio many-body method, called the in-medium similarity renormalization group, with an extension that can handle partially filled nuclear orbitals.

The team calculated ground-state energies for nearly 700 isotopes. The resulting energies, which agree remarkably well with measurements made so far, were then used as the basis to determine the location of the dripline, including theoretical uncertainties. The researchers are currently pushing their work to heavier elements. This extended map will ultimately provide valuable input for simulations of the formation of neutron-rich isotopes, such as those created during neutron star mergers.

–Marric Stephens

Marric Stephens is a Corresponding Editor Physics Magazine based in Bristol, UK.

References

  1. S. R. Stroberg et al., “Ab initio limits of atomic nuclei,” Phys. Rev. Lett. 126, 022501 (2021).

Subject Areas

Nuclear Physics

Related Articles

Measuring Fusion Power
Nuclear Physics

Measuring Fusion Power

Experiments at the Joint European Torus make the case for using gamma rays to determine the fusion reaction rate in a magnetically confined plasma. Read More »

Nuclear Decay Detected in the Recoil of a Levitating Bead
Nuclear Physics

Nuclear Decay Detected in the Recoil of a Levitating Bead

A levitating microparticle is observed to recoil when a nucleus embedded in the particle decays—opening the door to future searches of invisible decay products. Read More »

Crystallizing the Path Toward a Nuclear Clock
Nuclear Physics

Crystallizing the Path Toward a Nuclear Clock

Researchers have made the most precise measurement to date of the excited nuclear state of thorium-229, a candidate isotope for an ultraprecise nuclear clock. Read More »

More Articles