Synopsis

Cubes Keep Their Distance

Physics 14, s42
Cubes suspended in a liquid are less likely than spheres to form clusters and fall out of solution.
A. Seyed-Ahmadi and A. Wachs [1]

Particle-laden flows are ubiquitous in natural and industrial processes. Models that describe how particles behave in a suspension are vital for, among other things, explaining river deposits and designing waste-water treatment plants. But these models assume that particles are spherical, which is a problem in a world where sediment grains come in all shapes and sizes. Arman Seyed-Ahmadi and Anthony Wachs, of the University of British Columbia, Canada, now show through simulations that, unlike a sphere-laden flow, a cube-laden one tends to resist clustering, remaining homogeneous for longer. The finding provides an important update for models of environmental flows.

Seyed-Ahmadi and Wachs developed numerical simulations that account for the hydrodynamic forces and torques experienced by hundreds of cubic particles suspended in a tank of water. The simulations track the particles’ velocity fluctuations, the resulting microstructure of the suspension, and the forces on each particle. The duo found that the spatial distribution of the cubes is more homogenous than a similar mixture of spheres.

This result comes from the cubes’ sharp edges, which give rise to rotation-induced lift forces that prevent the cubes from clustering. The rotation effectively transfers momentum from the downward direction to the transverse direction, thereby creating a lift-like buoyancy that encourages the particles to remain suspended rather than fall to the bottom.

Seyed-Ahmadi and Wachs conclude that cubic particles may be desirable for industrial applications that need enhanced mixing. And they say the model is a good proxy for other angled grains, such as the particles produced in soil, rock, and mining engineering processes, which are typically polyhedral-shaped.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.

References

  1. A. Seyed-Ahmadi and A. Wachs, “Sedimentation of inertial monodisperse suspensions of cubes and spheres,” Phys. Rev. Fluids 6, 044306 (2021).

Subject Areas

Fluid Dynamics

Related Articles

Cold Calculus: Modeling Heat Exchange in the Arctic
Fluid Dynamics

Cold Calculus: Modeling Heat Exchange in the Arctic

A new model captures the flow of heat from ocean water into floating ice, providing an important input for efforts to predict future melting in the Arctic. Read More »

Soft Solid Flows Through a Pipe
Fluid Dynamics

Soft Solid Flows Through a Pipe

An ultrasoft material can move smoothly through a pipe, but the motion generates “furrows” on the material’s front surface. Read More »

Robotic Vacuum Cleaner for Microplastics
Fluid Dynamics

Robotic Vacuum Cleaner for Microplastics

Seong Jim Kim and Myoung-Woon Moon of the Korea Institute of Science and Technology have developed a device that can “vacuum” up tiny pieces of plastic floating on the surface of a body of water. Read More »

More Articles