Droplets Sliding Across a Stretched Surface

Physics 14, s49
Experiments show that stretching the substrate changes the shape and dynamics of droplets, suggesting a new way to control fluid motion in microfluidic chips.
K. Smith-Mannschott et al. [1]

Biological and chemical assays are increasingly automated using microfluidic chips, which control the motions of tiny droplets with microscopic pillars, bumps, and other features. Now, Katrina Smith-Mannschott at the Swiss Federal Institute of Technology (ETH) in Zurich and colleagues demonstrate an alternative way to manipulate such droplets—by stretching the substrate they sit on [1]. The approach could lead to simpler techniques for fabricating microfluidic devices.

The researchers studied how glycerol droplets of 2 mm in diameter slide on a soft, millimeter-thick layer of silicone gel. When they stretched the gel layer by 23% of its original length, the droplets slid significantly faster in the direction parallel to the applied stretch than in the perpendicular direction. When the droplets stopped moving, they appeared elongated along the stretch direction, with smaller droplets exhibiting greater anisotropies.

K. Smith-Mannschott et al. [1]
A droplet sliding along a stretched substrate parallel (left) or perpendicular (right) to the stretching direction.

According to existing theories of wetting, static droplets on homogeneous surfaces should contract uniformly, wetting a circular region of the substrate. To understand the different dynamics on a stretched surface, the researchers examined the droplets’ boundaries microscopically. They found that the wetting ridge—a usually uniform “puckering” of the substrate around the perimeter of each droplet—was asymmetric and that the degree of asymmetry depended on how much the substrate had been stretched. From this observation, they suggested that a droplet elongates because the variation in ridge shape around its perimeter creates an imbalance of intermolecular forces between the substrate and the droplet. These forces, which are responsible for a range of elastocapillary effects in other systems (see Synopsis: Hair Styling with Physics), also explain the strain-dependent increase in droplet speed. The researchers hope that additional experiments will reveal the limits on asymmetric wetting behavior that can be achieved with this technique.

–Sophia Chen

Sophia Chen is a freelance science writer based in Columbus, Ohio.


  1. K. Smith-Mannschott et al., “Droplets sit and slide anisotropically on soft, stretched substrates,” Phys. Rev. Lett. 126, 158004 (2021).

Subject Areas

Fluid DynamicsSoft Matter

Related Articles

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

Ocean Currents Resolved on Regional Length Scales
Computational Physics

Ocean Currents Resolved on Regional Length Scales

Using a detailed simulation, researchers reveal how climate change will affect the regional dynamics of the conveyor-belt-like circulation of water through the Atlantic Ocean. Read More »

A Slight Curvature Gives Pebbles an Impacting Edge
Fluid Dynamics

A Slight Curvature Gives Pebbles an Impacting Edge

Pebbles that are slightly curved—rather than completely flat—exert the highest impact forces when dropped onto a watery surface. Read More »

More Articles