Synopsis

Black Hole Area Law Tested

Physics 14, s87
By comparing the sizes of black holes before and after a merger, researchers have tested Hawking’s theorem on black hole areas.
Tyler Hulett/stock.adobe.com

Black holes may be the oddest cosmic creatures, but they should follow simple laws dictated by thermodynamics. Stephen Hawking formulated one such law, stating that the area of a black hole’s event horizon—much like entropy—cannot decrease over time (at least on timescales much shorter than the age of the Universe). Testing this law by sizing up individual black holes is currently impossible, but gravitational-wave observations now allow researchers to do so using black hole mergers. Maximiliano Isi of the Massachusetts Institute of Technology, and colleagues report a direct test of the theorem, obtained by analyzing the first merger ever detected, GW150914. The team’s comparison of the black hole sizes before and after the merger shows that the theorem isn’t violated [1].

When applied to a merger, the area theorem implies that the combined area of the two progenitor black holes cannot exceed that of the postmerger remnant. Spurred by a question from physicist Kip Thorne, Isi and co-workers developed a method for calculating these areas from the gravitational-wave signal. The method involves extracting the “before” and “after” black hole areas by analyzing, in the time domain, the “inspiral” and “ringdown” portions of the signal, respectively. The team compared procedures that included or excluded different parts of the signal—such as overtones, or a narrow window around the moment of coalescence—as each of these analyses required different assumptions. They found that, for this specific merger, the theorem held with at least 95% probability (or 2-sigma confidence). By analyzing other detections—past and upcoming—the researchers say that they can improve this accuracy and also vet the theorem’s validity on a large population of black holes or black hole candidates.

–Matteo Rini

Matteo Rini is the Editor of Physics Magazine.

References

  1. M. Isi et al., “Testing the black-hole area law with GW150914,” Phys. Rev. Lett. 127, 011103 (2021).

Subject Areas

AstrophysicsGravitationStatistical Physics

Related Articles

Failed Barrier Crossings Tell a Story
Statistical Physics

Failed Barrier Crossings Tell a Story

Researchers have measured short-timescale fluctuations in metastable systems, uncovering information about failed attempts to cross the barriers that define the metastable state. Read More »

Constraining Many-Body Localization
Statistical Physics

Constraining Many-Body Localization

Theoretical work sheds light on why some many-body quantum systems get locally stuck and fail to reach thermal equilibrium—a phenomenon known as many-body localization. Read More »

JWST Sees More Galaxies than Expected
Astrophysics

JWST Sees More Galaxies than Expected

The new JWST observatory is revealing far more bright galaxies in the early Universe than anyone predicted, and astrophysicists have more than one explanation for the puzzle. Read More »

More Articles