Special Feature

The Equivalence Principle under a MICROSCOPE

Physics 15, 95
A cartoon illustrates results from the MICROSCOPE satellite mission, which has measured with astronomical sensitivity the falling rate of different objects under gravity.

—Matthew R. Francis is a physicist and freelance science writer based in Virginia.

—Maki Naro is a science illustrator based in New York.


Subject Areas

Gravitation

Recent Articles

A Time Standard for the Moon—Thanks to General Relativity
Astrophysics

A Time Standard for the Moon—Thanks to General Relativity

As part of an effort to establish a lunar time standard, researchers have used relativity to calculate time differences between Earth and the Moon. Read More »

Signatures of Gravitational Atoms from Black Hole Mergers
Astrophysics

Signatures of Gravitational Atoms from Black Hole Mergers

Gravitational-wave signals from black hole mergers could reveal the presence of “gravitational atoms”—black holes surrounded by clouds of axions or other light bosons. Read More »

Dark Matter Search in Gravitational-Wave Data
Gravitation

Dark Matter Search in Gravitational-Wave Data

An analysis of gravitational data from the LIGO detector sets new limits on a wave-like form of dark matter called scalar-field dark matter. Read More »

More Articles