Synopsis

Hunting for Axions in the Galactic Center

Physics 15, s163
A neutron star’s ultrastrong magnetic field could create the conditions for uncloaking a promising dark matter candidate.
I. Heywood/University of Oxford; SARAO; J. C. Muñoz-Mateos/ESO

The axion—a hypothetical elementary particle—was originally conceived to solve a puzzle relating to one of the four fundamental forces. Theorists then found another use for this putative particle as a component of dark matter, the mysterious substance that makes up 27% of the Universe’s mass. One place axions could show up is in the radio spectra of neutron stars. Now researchers looking for that signature have derived a new upper limit on a key property of axions: how strongly they interact with photons [1].

One approach to detecting axions is to apply a strong magnetic field to a microwave cavity and then look for a predicted signal of axions converting into photons. In 2009 a pair of astronomers proposed that this conversion could also occur in the plasma threaded by a neutron star’s ultrastrong magnetic field. The conversion is predicted to manifest as a narrow, radio-frequency emission line whose exact frequency depends on the axion mass and whose amplitude depends on the axion density.

The predicted signal is beyond the reach of current telescopes. However, in 2020 the Massachusetts Institute of Technology’s Joshua Foster and his collaborators demonstrated that it’s possible to derive useful upper limits on the strength of axion-photon conversion by looking for the signal where it’s likely to be strongest: the Galactic Center.

Now the same team has looked for that signal in data gathered during a search for signatures of intelligent extraterrestrial life. They examine a higher and wider range of axion mass than before (15–35 𝜇eV versus 5–11 𝜇eV) and use a more detailed model of the neutron star population. Evidence of axions remains elusive, but the new interaction-strength bound is more stringent.

–Charles Day

Charles Day is a Senior Editor for Physics Magazine.

References

  1. J. W. Foster et al., “Extraterrestrial axion search with the Breakthrough Listen Galactic Center survey,” Phys. Rev. Lett. 129, 251102 (2022).

Subject Areas

Particles and Fields

Related Articles

Gamma-Ray Burst Tightens Constraints on Quantum Gravity
Particles and Fields

Gamma-Ray Burst Tightens Constraints on Quantum Gravity

An analysis of the brightest gamma-ray burst ever observed reveals no difference in the propagation speed of different frequencies of light—placing some of the tightest constraints on certain violations of general relativity. Read More »

Flavor Profiling the Highest-Energy Neutrinos
Astrophysics

Flavor Profiling the Highest-Energy Neutrinos

A way to determine the flavors of ultrahigh-energy cosmic neutrinos observed by future detectors could help scientists understand the origin of these elusive particles. Read More »

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

More Articles