Synopsis

Hunting for Axions in the Galactic Center

Physics 15, s163
A neutron star’s ultrastrong magnetic field could create the conditions for uncloaking a promising dark matter candidate.
I. Heywood/University of Oxford; SARAO; J. C. Muñoz-Mateos/ESO

The axion—a hypothetical elementary particle—was originally conceived to solve a puzzle relating to one of the four fundamental forces. Theorists then found another use for this putative particle as a component of dark matter, the mysterious substance that makes up 27% of the Universe’s mass. One place axions could show up is in the radio spectra of neutron stars. Now researchers looking for that signature have derived a new upper limit on a key property of axions: how strongly they interact with photons [1].

One approach to detecting axions is to apply a strong magnetic field to a microwave cavity and then look for a predicted signal of axions converting into photons. In 2009 a pair of astronomers proposed that this conversion could also occur in the plasma threaded by a neutron star’s ultrastrong magnetic field. The conversion is predicted to manifest as a narrow, radio-frequency emission line whose exact frequency depends on the axion mass and whose amplitude depends on the axion density.

The predicted signal is beyond the reach of current telescopes. However, in 2020 the Massachusetts Institute of Technology’s Joshua Foster and his collaborators demonstrated that it’s possible to derive useful upper limits on the strength of axion-photon conversion by looking for the signal where it’s likely to be strongest: the Galactic Center.

Now the same team has looked for that signal in data gathered during a search for signatures of intelligent extraterrestrial life. They examine a higher and wider range of axion mass than before (15–35 𝜇eV versus 5–11 𝜇eV) and use a more detailed model of the neutron star population. Evidence of axions remains elusive, but the new interaction-strength bound is more stringent.

–Charles Day

Charles Day is a Senior Editor for Physics Magazine.

References

  1. J. W. Foster et al., “Extraterrestrial axion search with the Breakthrough Listen Galactic Center survey,” Phys. Rev. Lett. 129, 251102 (2022).

Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles