Synopsis

Driving a One-Way Flow with a Two-Way Field

Physics 15, s174
A design for a nanopump that uses an alternating electric field could allow researchers greater control over nanoscale fluid flows.
A. D. Ratschow/TU Darmstadt

When it comes to manipulating fluid flows, less is sometimes more. Devices that move minute quantities of fluids through nanoscopic channels called nanopores have found applications in molecular sensing, DNA sequencing, and even power generation. Now Aaron Ratschow at the Technical University of Darmstadt in Germany and his colleagues propose a new method for driving nanoscale fluid flows that they say could give researchers greater control [1].

Ratschow and colleagues simulated the flow of an electrolyte moving between two reservoirs through a 100-nm-long, cone-shaped pore. They modeled this system under an electric field that switched direction and analyzed how the system responded to different switching frequencies.

The team observed that when the pore wall is positively charged, it accumulates a layer of negative ions and, on top of that, a layer of positive ions. The formation of this “electric double layer” (EDL) occurs after a time delay, and its growth rate depends on the speed of ion transport into the nanopore. When the electric field switches direction, the EDL dissipates and then reforms with the opposite polarity.

In a nanopore with parallel walls, the alternating field would drive the electrolyte back and forth with no net flow. But the team found that the conical nanopore has a symmetry-breaking effect that, coupled with the delayed EDL formation, results in a net flow toward the wide end. The flow reaches a maximum rate at a specific field frequency and falls to zero away from that frequency.

In previously demonstrated devices, electrolytes have been driven by constant, long-range electric fields that can encompass many nanopores. In the new design, the alternating field only needs to act locally, meaning adjacent nanopores can be controlled independently.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. A. D. Ratschow et al., “Resonant nanopumps: AC gate voltages in conical nanopores induce directed electrolyte flow,” Phys. Rev. Lett. 129, 264501 (2022).

Subject Areas

Fluid DynamicsNanophysics

Related Articles

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Ocean Measurements Detect Conditions for Giant Waves
Fluid Dynamics

Ocean Measurements Detect Conditions for Giant Waves

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves. Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

More Articles