Synopsis

A Bose-Einstein-Condensate Boomerang

Physics 15, s24
After being pushed in one direction, the average momentum of a Bose-Einstein condensate is seen to slow and return to its original value.
R. Sajjad/University of California, Santa Barbara

Real-world materials contain elements of disorder, such as atomic impurities or imperfect alignments in the interfaces of their crystals. These imperfections cause electrons in the material to become confined to a particular location—an effect known as Anderson localization—which can give rise to unexpected macroscopic behaviors, such as turning a metal into an insulator. It can also cause the so-called quantum-boomerang effect, in which a localized particle launched in any direction returns to its original location. Now, Roshan Sajjad of the University of California, Santa Barbara, and colleagues report the first experimental observation—in the momentum space of a Bose-Einstein condensate (BEC)—of this effect [1].

The team’s BEC was comprised of 100,000 lithium atoms confined in an optical lattice. The team imparted momentum to the BEC by switching off the laser used to make the initial trapping lattice and repeatedly pulsing another laser to create an identical but phase-shifted lattice. Monitoring the average momentum of the BEC, they observed it to accelerate in one direction, slow, and then reverse direction, returning to its initial momentum, as expected for a quantum boomerang.

The team also looked for conditions that would prevent a boomerang of the BEC’s momentum. For example, they found that introducing a time delay to the kick could, under most conditions, suppress the effect. The results matched their expectation that the BEC should only experience a momentum boomerang when initialized in a state that has time-reversal symmetry. In the future, the team says that they plan to study the quantum-boomerang effect in more complex systems whose constituent particles interact.

–Sophia Chen

Sophia Chen is a freelance science writer based in Columbus, Ohio.

References

  1. R. Sajjad et al., “Observation of the quantum boomerang effect,” Phys. Rev. X 12, 011035 (2022).

Subject Areas

Atomic and Molecular Physics

Related Articles

Trapped Ions Go the Distance
Atomic and Molecular Physics

Trapped Ions Go the Distance

Researchers have achieved long-distance entanglement between two calcium ions, each of which lies in a different building, showing that trapped ions could be used to create quantum networks. Read More »

Twinkling of a Shrinking Droplet Reveals Hidden Complexity
Atomic and Molecular Physics

Twinkling of a Shrinking Droplet Reveals Hidden Complexity

Captivating patterns found in the light scattered by an evaporating water droplet could be used to infer the properties of the droplet as it shrinks. Read More »

Watching Rydberg Molecules Vibrate in Slow Motion
Atomic and Molecular Physics

Watching Rydberg Molecules Vibrate in Slow Motion

Researchers have recorded for the first time the dynamics of vibrating Rydberg molecules, the slow-motion counterparts of regular molecules. Read More »

More Articles