Synopsis

Rearranging Nanoclusters Using Randomness

Physics 15, s83
Simulations suggest that thermal fluctuations combined with macroscopic forces could be used to quickly generate specific configurations of few-atom nanoclusters.
F. Boccardo and O. Pierre-Louis [1]

According to the infinite monkey theorem, a monkey randomly hitting the keys of a typewriter will eventually write something worth reading—but it might take a few trillion years of trying. For those lacking the patience to wait, Francesco Boccardo and Olivier Pierre-Louis at the University Claude Bernard Lyon 1, France, now show that randomness can deliver specific outcomes much more quickly [1]. Simulating a 2D nanocluster of a dozen particles, the researchers determine the temperature at which thermal fluctuations can most quickly rearrange those particles into a predetermined shape. They find that this time can be dramatically cut by applying an appropriate macroscopic force to the particles. The result could lead to efficient ways to fabricate components for nanoscale devices.

In their model, the particles—anything from atoms to colloidal nanoparticles—occupy a square lattice. Adjacent particles bind together, but thermal fluctuations give those on the edge of the cluster a chance of hopping to a neighboring position at each simulated time step. That hopping allows the nanocluster to evolve iteratively toward a target configuration. One might expect the speed of this evolution to increase with the thermal-fluctuation rate—that is, with temperature. But the researchers find that certain compact shapes are achieved most quickly at specific finite temperatures, above which the formation time rises.

The duo also simulated nanoclusters that were subject to a macroscopic force field, for example, metallic nanoparticles in an electric field. Like steering a marble through a tilting labyrinth, they found the optimal global force to apply at each iteration such that the nanocluster navigated the space of possible configurations several orders of magnitude more quickly. The researchers say that they hope to convince an experimentalist to realize their method soon.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. F. Boccardo and O. Pierre-Louis, “Controlling the shape of small clusters with and without macroscopic fields,” Phys. Rev. Lett. 128, 256102 (2022).

Subject Areas

Statistical PhysicsNanophysics

Related Articles

Nanostructures Control Ultraviolet Light Generation
Nanophysics

Nanostructures Control Ultraviolet Light Generation

By etching nanostructures into ultraviolet-generating materials, researchers show that they can manipulate the outgoing light in ways that aren’t otherwise possible.   Read More »

Defects Help 3D-Printed Particles Keep on Swirling
Statistical Physics

Defects Help 3D-Printed Particles Keep on Swirling

At packing densities where particles in many liquid-like systems stop moving, 3D-printed ellipsoids can keep scuttling because of the presence of packing “defects.” Read More »

Quantum Field Theory Boosts Brain Model
Biological Physics

Quantum Field Theory Boosts Brain Model

Scientists have applied a technique called renormalization—often used in quantum field theory—to investigate how the brain stores and processes information. Read More »

More Articles