Video

Controlling the Bounce of a Bottle

Physics 16, 102
Dropping a rotating plastic bottle containing water results in a bounce whose height depends on the rotation rate.
K. Andrade et al. [1]
Dropping bottles partially filled with water results in bounce heights that depend on the speed of the initial rotation. The rotation rates vary (left to right) from 0 to 12 revolutions per second, and the shape of the fluid surface during free fall reflects the rotation rate (see still images below).

With experiments that bring to mind a social media challenge, researchers demonstrated control over the bounce height of a dropped plastic bottle partially filled with water [1]. The team, led by Pablo Gutiérrez of O’Higgins University and Leonardo Gordillo of the University of Santiago, both in Chile, showed that initially spinning the bottle around a vertical axis strongly reduces the bounce height. The rotation forces water up along the walls, which, upon impact, generates a vertical jet in the center that can absorb much of the kinetic energy. Like a diver pushing downward on a diving board to gain height, the liquid in the jet pushes against the bottle as it moves upward, preventing the bottle from bouncing as high as it would if the water were quiescent.

While others have observed that fluid in a dropped container can affect its bounce [2], the new experiments are the first to use fluid rotation and the amount of water to systematically control the bounce height. The researchers developed a simple theory that agrees with the data and predicts that the most effective suppression of bouncing occurs with the highest rotation rates (they went up to 12.7 revolutions per second) and with the bottle about 40% full. They say that the mechanism they studied could apply to fluid transport in tank trucks or external fuel tanks of spacecraft, where planners could potentially reduce the effects of impacts by allowing extra volume in the container for fluid motion. The team encourages readers to try the experiments at home by swirling and dropping partially filled plastic bottles.

K. Andrade et al. [1]
Bottling that energy. Images are shown in the bottle reference frame and are spaced equally in time. Top row: Water climbs the walls during free fall of a rotating bottle in a sequence that spans 375 ms in time from the moment of the drop to just before impact. Bottom row: This sequence spans 37 ms from impact until the central water jet disintegrates.

–David Ehrenstein

David Ehrenstein is a Senior Editor for Physics Magazine.

References

  1. K. Andrade et al., “Swirling fluid reduces the bounce of partially filled containers,” Phys. Rev. Lett. 130, 244001 (2023).
  2. T. W. Killian et al., “Rebound and jet formation of a fluid-filled sphere,” Phys. Fluids 24, 122106 (2012).

Subject Areas

Fluid DynamicsMechanics

Related Articles

Making Miniature Artificial Cilia
Fluid Dynamics

Making Miniature Artificial Cilia

Researchers have reproduced the wafting motion of hair-like structures on cell surfaces with tiny magnetic rods and a rotating magnetic field. Read More »

Why Seawater Is Foamy
Fluid Dynamics

Why Seawater Is Foamy

Observations of air-bubble mergers in water explain why dissolved salt slows this process and leads to foam. Read More »

Droplets Scoot Like Caterpillars
Fluid Dynamics

Droplets Scoot Like Caterpillars

A liquid droplet pushed by the wind contracts and stretches its way along a surface until it breaks apart. Read More »

More Articles