Synopsis

Striking a Balance for Quantum Bits

Physics 16, s124
A demonstration that certain electron-transport processes can be tuned in a hybrid semiconductor-superconductor system could be useful for developing quantum computers.
A. Bordin et al. [1]

The hypothesized Majorana bound state is a quasiparticle that scientists think could be a building block of a future quantum computer. It is predicted to be hosted by two quantum dots—semiconducting nanocrystals—separated by a narrow superconducting segment, but this can happen only if the processes coupling the dots are perfectly balanced. Now Tom Dvir at the Delft University of Technology in the Netherlands and his colleagues experimentally balance these processes in a hybrid semiconductor-superconductor system [1]. The experiments show no signs of a Majorana bound state, but the researchers plan to use their findings to develop a method to spot this elusive quasiparticle.

The two processes that must be balanced are called elastic cotunneling and crossed Andreev reflection. Elastic cotunneling is the movement of single electrons between the two quantum dots through the intervening superconducting segment. Crossed Andreev reflection describes effects related to the formation of bound states between electrons that enter the intervening segment from each dot.

In Dvir and colleagues’ system, a semiconducting nanowire hosts the quantum dots, and the intervening segment takes the form of a thin superconducting layer above the nanowire’s center. The researchers find that they can change the probabilities of elastic cotunneling and crossed Andreev reflection by varying either the voltage applied to an electrode underneath the system or the orientation of an external magnetic field. By carefully tuning these parameters they successfully balance the two processes. Comparing their data with a theoretical model, they conclude that this controllability comes from a previously unseen type of electron interference.

–Ryan Wilkinson

Ryan Wilkinson is a Corresponding Editor for Physics Magazine based in Durham, UK.

References

  1. A. Bordin et al., “Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires,” Phys. Rev. X 13, 031031 (2023).

Subject Areas

Condensed Matter PhysicsQuantum Physics

Related Articles

Atomic Spreading Produces Novel Superconductors
Condensed Matter Physics

Atomic Spreading Produces Novel Superconductors

A liquid-like spreading of metal atoms on a topological material can generate a superconductor—one that might benefit quantum computing. Read More »

A New Way to Transport Spin Currents
Magnetism

A New Way to Transport Spin Currents

Spin currents carried by magnetic waves called magnons can be sent across a device without using insulating magnets—a result that could lead to spintronic devices compatible with silicon electronics. Read More »

Extending the Kibble-Zurek Mechanism
Superconductivity

Extending the Kibble-Zurek Mechanism

A theory first applied to phase transitions in the early Universe and then to defects in superfluid helium can now account for a wider variety of systems. Read More »

More Articles