Quasiparticles Repel, Then Attract

Physics 16, s132
Resonant excitation of a thin-film semiconductor leads to impurities that attract rather than repel each other, providing a possible tool for manipulating superconductivity.
L. B. Tan et al. [1]

When a mobile impurity such as an electron interacts with a bath of bosons, it forms a quasiparticle—a polaron—whose properties are very different from those of the impurity itself. For example, in a superconductor, electron–phonon interactions generate polarons that attract one another (forming Cooper pairs) even though individual electrons are mutually repulsive. A general understanding of what dictates polarons’ properties and their resulting interactions remains elusive but is fundamental for finding ways to tune and manipulate these quasiparticles. Addressing this problem with experiments and theory, Li Bing Tan of the Swiss Federal Institute of Technology (ETH) in Zurich and her colleagues demonstrate a mechanism for modifying impurity interactions in a bosonic bath [1]. By changing the bath density, they turn repulsive interactions into attractive ones.

Tan and her colleagues excited polaritons—quasiparticles comprising a photon coupled to an exciton—in an atomically thin semiconductor embedded in a resonant optical cavity. By using differently polarized lasers, two of these polaritons—the impurities—were created with one spin direction, while the rest—a controllable number making up the bosonic bath—had the opposite spin direction. Spectroscopy measurements of the light that exited the cavity revealed how the impurity polaritons interacted with the bath and with each other. For low bath-polariton densities, the impurities repelled one another. As the bath density increased, the repulsion decreased in strength and then, strikingly, switched to attraction.

The researchers say that their finding is the first direct measurement of impurity interaction strength in any physical system. It provides a means of controlling and identifying unconventional mechanisms of quasiparticle interaction that could be used to engineer superconductivity in different materials.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.


  1. L. B. Tan et al., “Bose polaron interactions in a cavity-coupled monolayer semiconductor,” Phys. Rev. X 13, 031036 (2023).

Subject Areas

Condensed Matter PhysicsQuantum Physics

Related Articles

Measuring the First Moments of Crystallization
Chemical Physics

Measuring the First Moments of Crystallization

A new liquid-jet technology enabled researchers to test the theory for liquid freezing more stringently than was possible in previous experiments, but uncertainties remain. Read More »

Quantifying Uncertainties in Quantum Simulations
Quantum Information

Quantifying Uncertainties in Quantum Simulations

A method for analyzing uncertainties in so-called analog quantum simulations could help scientists make precise predictions using these models. Read More »

Cooper Pairs Pair Up in a Kagome Metal
Condensed Matter Physics

Cooper Pairs Pair Up in a Kagome Metal

In its superconducting state, an exotic metal harbors charge carriers that appear to have 4 and 6 times the charge of a single electron, suggesting the formation of Cooper-pair “molecules.” Read More »

More Articles