Synopsis

Neutron Pairs Condense in Excited Helium-8

Physics 16, s174
Scattering experiments show that the four extra neutrons in helium-8 can pair up and form a nuclear analog of a Bose-Einstein condensate.
Z. Yang/Peking University

In its ground state, the helium-8 (8He) nucleus consists of an alpha particle (4He nucleus) and four neutrons. If, before its few-hundred-milliseconds life ends, an 8He nucleus is nudged into its first 0+ excited state, the four neutrons form two pairs known as dineutron clusters. According to theory, the alpha particle and the two neutron clusters settle into a three-member nuclear analog of a Bose-Einstein condensate. That outcome has now been observed for the first time by Zaihong Yang of Peking University and his colleagues at the RIKEN Nishina Center in Japan [1].

The experiment entailed firing a high-intensity beam of 8He nuclei at polyethylene and carbon targets. Some collisions excited the nuclei into the sought-after condensate state, which promptly broke up into a helium-6 (6He) nucleus and a single neutron pair. The 6He nuclei made their way through dipole magnets to drift detectors and plastic scintillators for characterization. The neutrons struck a plastic scintillator whose layered construction made it possible to identify which neutrons were correlated—that is, members of a dineutron cluster—and which were not. The correlated neutron pairs and the scattering count rate’s dependence on energy, angle, and type of target were all consistent with theoretical predictions of the nature of the correlated 8He excited state.

The 8He condensate resembles the so-called Hoyle state of carbon-12, which consists of three alpha particles in the condensed state. Astronomer Fred Hoyle predicted the state in 1954 to account for the synthesis of carbon in helium-burning stars. Yang points out that nuclear condensates could also have implications for understanding the structures of exotic nuclei and neutron stars.

–Charles Day

Charles Day is a Senior Editor for Physics Magazine.

References

  1. Z. H. Yang et al., “Observation of the exotic 02+ cluster state in 8He,” Phys. Rev. Lett. 131, 242501 (2023).

Subject Areas

Nuclear Physics

Related Articles

A Route Toward the Island of Stability
Nuclear Physics

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

More Articles