Synopsis

A Different Angle on the Color Glass Condensate

Physics 16, s89
Predictions indicate that a new type of measurement at the future electron–ion collider could spot an elusive high-density regime of gluons called the color glass condensate.  
Brookhaven National Laboratory

The gluon is the “glue” of subatomic particles, mediating the strong force that binds quarks to make subatomic particles such as protons and neutrons. Researchers can image the gluons within a proton by colliding protons with high-energy electrons. Most often, the resulting image reveals sparsely distributed gluons. But under specific conditions, such collisions are predicted to provide a glimpse of a very high-density state of gluons called the color glass condensate. Now Xiaohui Liu of Beijing Normal University and colleagues propose a way to observe the color glass condensate using the future electron–ion collider (EIC), which is set to be built at Brookhaven National Laboratory, New York [1].

The EIC will collide electrons with heavy ions, such as gold. Liu and colleagues propose looking for signatures of the color glass condensate in the debris of these collisions. Their method involves measuring the energy of the debris as a function of its angle relative to the collision axis. Models indicate that a measure of correlation between the debris energy and angle depends on whether the gluons in the ion that participated in the collision were in a dilute state or the color glass state. So, by measuring this correlation, Liu and colleagues predict that researchers can pinpoint the “saturation scale,” which marks the onset of the color glass condensate regime within an ion. Such a measurement could shed light on the unique ability of gluons to interact among themselves.

–Nikhil Karthik

Nikhil Karthik is an Associate Editor for Physical Review Letters.

References

  1. H.-Y. Liu et al., “Nucleon energy correlators for the color glass condensate,” Phys. Rev. Lett. 130, 181901 (2023).

Subject Areas

Particles and FieldsNuclear Physics

Related Articles

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

Nuclear Decay Detected in the Recoil of a Levitating Bead
Nuclear Physics

Nuclear Decay Detected in the Recoil of a Levitating Bead

A levitating microparticle is observed to recoil when a nucleus embedded in the particle decays—opening the door to future searches of invisible decay products. Read More »

More Articles