Synopsis

Gated Flows in Charged Channels

Physics 17, s95
Electrically patterning the walls of a nanochannel could provide a route to creating “valves” that abruptly alter the speed at which a charged fluid flows through a nanofluidic device.
T. Curk et al. [1]

The tiny channels in cellular membranes are sensitive sentinels to what enters and leaves a biological cell. These channels can regulate ion flows by adapting their shapes and can even stop the flow completely, acting like emergency shutoff valves. Efforts to mimic this biological capability have centered on altering the geometry of the nanochannels. Now Tine Curk of Johns Hopkins University in Maryland and his colleagues propose an alternative approach [1]. In numerical simulations, the researchers show that they can abruptly change the speed with which a pressure-driven charged fluid flows through a nanochannel by electrically patterning the walls of that channel. The finding could be used by others to create sensitive on-off flow valves for fluids moving in the nanofluidic channels found, for example, in biomedical and neuromorphic devices.

Curk and his team simulated a salt solution flowing through a straight rectangular channel with a width of around 5 nm. The inside walls of the channel were patterned with alternating bands of positive and negative electrical charges. The researchers studied what happened when they increased the pressure gradient driving the flow.

Tracking the velocity of the flow, Curk and his colleagues found that the velocity abruptly increased by an order of magnitude when the pressure gradient reached a threshold value. This value depended on the ion concentration and the channel width. The researchers linked the cause of this abrupt flow transition to the drag on the fluid. When the drag was dominated by electrostatic interactions between the wall and the fluid’s ions the velocity was lower than when the drag was dominated by hydrodynamic forces. The researchers say that this transition effect is distinct from other phenomena known to cause sudden transitions in the properties of a flowing fluid.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.

References

  1. T. Curk et al., “Discontinuous transition in electrolyte flow through charge-patterned nanochannels,” Phys. Rev. Lett. 133, 078201 (2024).

Subject Areas

Materials Science

Related Articles

How Migration May Stabilize the Diversity of Ecosystems
Condensed Matter Physics

How Migration May Stabilize the Diversity of Ecosystems

A model based on statistical physics suggests that the combination of species migration and interspecies interactions may allow a complex ecological system to maintain its diversity. Read More »

Electronic Bands Get a New Tuning Knob
Materials Science

Electronic Bands Get a New Tuning Knob

Researchers have used a specially crafted electric potential to manipulate the electronic band structure of graphene, laying the groundwork for on-demand electronic band design. Read More »

Revamp for High-Pressure-Superconductivity Measurements
Materials Science

Revamp for High-Pressure-Superconductivity Measurements

The pressures at which some elements start superconducting are so high that making detailed measurements of the transition has been impossible—until now. Read More »

More Articles