Synopsis

An approach to a theory of quantum gravity

Physics 2, s39
Finding a quantum theory of gravity remains one of the great unsolved problems in modern physics. Two papers present a quantum gravity theory that, while making different assumptions than general relativity, still reproduces Einstein’s theory in certain limits.

At large distances, Einstein’s theory of general relativity describes gravitational physics remarkably well.  However, attempts at defining quantum gravity at arbitrarily short distances based on the Einstein-Hilbert action of general relativity fail.

In two papers appearing in Physical Review Letters and Physical Review D, Petr Hořava of the University of California, Berkeley, in the US suggests a novel solution to finding a quantum theory of gravity that is renormalizable.  The novelty of Hořava’s approach lies in temporarily abandoning the symmetries that are the cornerstone of general relativity: invariance under general space-time coordinate transformations. Hořava proposes a carefully constructed theory that treats time and space differently but has the virtue of short distance behavior compatible with renormalizability.

But how is this theory related to Einstein’s general relativity—our well-tested theory of gravity?  According to Hořava, general relativity arises in the infrared (long distance) limit of his theory where the familiar properties and symmetries of general relativity emerge. – Ansar Fayyazuddin


Subject Areas

Gravitation

Related Articles

Black Holes Can’t Be Created by Light
Gravitation

Black Holes Can’t Be Created by Light

The formation of a black hole from light alone is permitted by general relativity, but a new study says quantum physics rules it out. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

Gravitational-Wave Memory May Illustrate Spacetime Symmetries
Cosmology

Gravitational-Wave Memory May Illustrate Spacetime Symmetries

Observing gravitational-wave memory may help physicists test general relativity predictions about large-scale symmetries in the fabric of spacetime. Read More »

More Articles