Synopsis

Dirac cone revealed

Physics 2, s86
The full Dirac spectrum has been measured in intercalated graphite.
Illustration: A. Grüneis et al., Phys. Rev. B (2009)

Idealized graphene is a two-dimensional sheet of carbon. The electrons in graphene behave like massless Dirac particles that appear in the electronic band structure as gapless excitations with a linear dispersion—the “Dirac cone.” However, in real life, graphene is never perfectly flat and may interact with the substrate that supports it, which significantly alter graphene’s electronic properties. Invariably, these effects open a gap that limits the observation of relativistic physics in graphene.

In an article appearing in Physical Review B, Alexander Grüneis and colleagues at the IFW in Dresden, Germany, and collaborators from Austria and Spain observe the full Dirac cone dispersion, expected for isolated graphene, in an intercalated graphite compound KC8 using angle resolved photoemission spectroscopy. The KC8 crystal consists of individual graphene sheets separated by layers of potassium. It turns out that there is a complete charge transfer from potassium to the graphene layers but there is no Coulomb interaction between the layers. This preserves the Dirac cone dispersion for both the valence and conduction bands, though the doping shifts the Dirac point away from the chemical potential (differently from what is expected for pristine graphene).

Grüneis et al. also perform electronic structure calculations to find excellent agreement with experimental data as long as electron-electron interactions within the graphene sheets are taken into account. These results provide crucial input to study the electronic and transport properties of isolated graphene, which has hitherto been difficult due to substrate effects. – Sarma Kancharla


Subject Areas

Graphene

Related Articles

Electron Chemical Potential Measured for Graphene
Graphene

Electron Chemical Potential Measured for Graphene

Researchers demonstrate a method for measuring the chemical potential in a many-electron system, providing a way to validate numerical calculations. Read More »

Graphene Doping Reaches New Levels
Strongly Correlated Materials

Graphene Doping Reaches New Levels

New experiments with doped graphene take the two-dimensional material beyond its “Van Hove singularity” to regions that may host exotic states of matter. Read More »

Geometry Rescues Superconductivity in Twisted Graphene
Superconductivity

Geometry Rescues Superconductivity in Twisted Graphene

Three papers connect the superconducting transition temperature of a graphene-based material to the geometry of its electronic wave functions. Read More »

More Articles