Letter to the Editor

More on the transmission matrix in optics

    Aristide Dogariu
    • CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
Physics 3, 67
A reader provides more background on use of disordered media in optics as discussed in a recent Viewpoint.

In regard to the Viewpoint by van Putten and Mosk [1], which discusses results on measurement of the transmission matrix in optics by S. M. Popoff et al., I would like to point out several facts. Aspects of propagation of waves through random media are at the heart of mesoscopic physics, and have therefore been studied extensively in the last two decades. The fact that the transmission matrix (TM) of disordered media depends in a complicated, seemingly random manner on the properties of the input field has been known for a long time. The use of random media as traditional optical components or systems was suggested twenty years ago by Isaac Freund [2] and a broader discussion of these proposals can also be found in a review by van Rossum and Nieuwenhuizen [3]. Since then, there have been several developments that exploit the existence of the transmission matrix without explicitly knowing it, as well as a number of practical applications that rely on measuring the transmission matrices of random media. However, the present essay does not provide an inclusive perspective of the entire field. The Viewpoint by van Putten and Mosk fails to acknowledge the original proposal by Freund in 1990 and other experimental demonstrations of the use of multiple scattering media as high-precision optical instruments. The control and use of light propagating through random media is indeed a topic of both significant fundamental importance and high practical relevance and, therefore, deserves to be placed in the appropriate factual context.

References

  1. E. G. van Putten and A. P. Mosk, Physics 3, 22 (2010)
  2. I. Freund, Physica A 168, 49 (1990)
  3. M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999)

Recent Articles

Gases Team Up for Enhanced Coherence
Atomic and Molecular Physics

Gases Team Up for Enhanced Coherence

Magnetic feedback causes two atomic gases to guide each other’s spins into long-lasting collective alignment. Read More »

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

Golden Ratio in Quasicrystal Vibrations
Condensed Matter Physics

Golden Ratio in Quasicrystal Vibrations

Experiments show that a property of the vibrations in a quasicrystal is linked to the number known as the golden ratio. Read More »

More Articles