More on the transmission matrix in optics

  • Aristide Dogariu, CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
Physics 3, 67
A reader provides more background on use of disordered media in optics as discussed in a recent Viewpoint.

In regard to the Viewpoint by van Putten and Mosk [1], which discusses results on measurement of the transmission matrix in optics by S. M. Popoff et al., I would like to point out several facts. Aspects of propagation of waves through random media are at the heart of mesoscopic physics, and have therefore been studied extensively in the last two decades. The fact that the transmission matrix (TM) of disordered media depends in a complicated, seemingly random manner on the properties of the input field has been known for a long time. The use of random media as traditional optical components or systems was suggested twenty years ago by Isaac Freund [2] and a broader discussion of these proposals can also be found in a review by van Rossum and Nieuwenhuizen [3]. Since then, there have been several developments that exploit the existence of the transmission matrix without explicitly knowing it, as well as a number of practical applications that rely on measuring the transmission matrices of random media. However, the present essay does not provide an inclusive perspective of the entire field. The Viewpoint by van Putten and Mosk fails to acknowledge the original proposal by Freund in 1990 and other experimental demonstrations of the use of multiple scattering media as high-precision optical instruments. The control and use of light propagating through random media is indeed a topic of both significant fundamental importance and high practical relevance and, therefore, deserves to be placed in the appropriate factual context.


  1. E. G. van Putten and A. P. Mosk, Physics 3, 22 (2010)
  2. I. Freund, Physica A 168, 49 (1990)
  3. M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999)

About the Author

Image of Aristide Dogariu


Related Articles

Viewpoint: Atom Scattering Picks Out the Heavyweights
Nuclear Physics

Viewpoint: Atom Scattering Picks Out the Heavyweights

Atomic-beam diffraction emerges as a viable approach to separating isotopes within the beam. Read More »

Synopsis: Explaining Mysterious Cosmic Emissions

Synopsis: Explaining Mysterious Cosmic Emissions

A theoretical study shows how hydrocarbons with structural defects might produce unexplained peaks in the cosmic infrared spectrum. Read More »

Focus: Probing Cell Squishiness

Focus: Probing Cell Squishiness

A new atomic force microscopy technique can map the elastic properties of living cells. Read More »

More Articles