Synopsis

Don’t micromanage when communication is delayed

Physics 3, s114
Reducing coordination among local nodes in a network suffering from time lags can improve the overall performance of the entire network.

From electrical power grids and large-scale computing networks to flocking birds, understanding the behavior of networks containing dynamic nodes is essential in many fields of research. Network synchronization, in which individual nodes change their properties to achieve a global result while communicating only with local neighbors, is especially relevant. In a paper in Physical Review Letters, David Hunt, Gyorgy Korniss, and Boleslaw Szymanski of Rensselaer Polytechnic Institute, US, ask what happens in a synchronizing network if large time delays are introduced in the communication between pairs of nodes.

Hunt et al. consider a simple stochastic model in which each node in a network adjusts its state to match that of its neighbors, but with a uniform time lag in reacting to the neighborly feedback. For zero time delay, the authors confirm that the nodes in the network can achieve synchronization, and for some suitably large time delay there is a threshold value at which point the network becomes unsynchronizable. Hunt et al. discover that there are trade offs: for networks with large time delays, reducing how tightly nearest neighbors are coupled can restore synchronization of the network. The lesson may be that when there are large lag times in communication between nodes, reduced local coordination effort improves global performance. – David Voss


Subject Areas

Interdisciplinary Physics

Related Articles

Identifying Phases in Low-Speed Human Movement
Complex Systems

Identifying Phases in Low-Speed Human Movement

By observing the motion of preschool children, researchers have developed a thermodynamic description of human movement that pinpoints collective phases emerging when social interactions are strong. Read More »

Social Networks Key to LGBTQ+ Physics Students Making It Through Grad School
Interdisciplinary Physics

Social Networks Key to LGBTQ+ Physics Students Making It Through Grad School

A new survey shows that affinity groups provide crucial support to women and LGBTQ+ physics PhD students—groups that continue to experience harassment and hostility. Read More »

Media Competition Drives Complex Social Dynamics
Interdisciplinary Physics

Media Competition Drives Complex Social Dynamics

A mathematical model suggests that social groups can behave in unexpected ways when subjected to competing mass media. Read More »

More Articles