Synopsis

One cannot polarize by strain alone

Physics 3, s160
Understanding the role of interface effects will be essential for designing thin-film ferroelectrics on semiconductors.
Credit: A. M. Kolpak et al., Phys. Rev. Lett. (2010).

Ferroelectric materials, which have a switchable electric polarization, are already the basis of nonvolatile memory and electronic devices, but efforts to make these materials in thin-film form face the frustrating effects of depolarizing fields that counteract ferroelectricity.

Recent experiments have suggested that strain could be important for stabilizing thin-film ferroelectrics. Bulk strontium titanate, for example, is not ferroelectric, but thin films deposited on silicon (which has a different lattice structure than strontium titanate) develop a spontaneous electric polarization at room temperature. The possibility that strained strontium titanate, integrated into a silicon wafer, could be a ferroelectric is exciting, but whether the polarization is due to switchable ferroelecricity or some other effect has remained an open question.

Now, in a paper published in Physical Review Letters, Alexie Kolpak (now at the Massachusetts Institute of Technology) and collaborators at Yale University, Brookhaven National Laboratory, and Argonne National Laboratory, all in the US, have investigated the effect of the interface on the observed polarization of strontium titanate films grown on silicon. Using both synchrotron x-ray diffraction and first-principles calculations they argue that the interface creates a polarized ground state that has been mistakenly identified as proof of ferroelectricty. While the absence of a new type of room-temperature ferroelectricity in these films is disappointing, Kolpak et al.’s paper provides a useful guide toward understanding the interface in thin-film ferroelectrics, which will be essential for the construction of functional devices. – Daniel Ucko


Subject Areas

NanophysicsMaterials Science

Related Articles

Nickelates Have Their Own Superconducting Style
Condensed Matter Physics

Nickelates Have Their Own Superconducting Style

Nickel oxides appear to have a fundamentally different superconductivity from that of copper oxides, according to new calculations. Read More »

A Tune for Lowering Lattice Friction
Condensed Matter Physics

A Tune for Lowering Lattice Friction

Placing an acoustic source on a sample could eliminate the energy dissipation caused by atomic defects moving through the solid. Read More »

Imaging Molecular Structure and Charge Simultaneously
Nanophysics

Imaging Molecular Structure and Charge Simultaneously

A new technique determines both the charge distribution and the structural distortions that result from the addition of a single charge to a molecule. Read More »

More Articles