Synopsis

Ordering in hydrogen under high pressure

Physics 3, s18
Molecular dynamics studies indicate a new phase of liquid hydrogen under high pressure.
Illustration: I. Tamblyn et al., Phys. Rev. Lett. (2010).

The behavior of hydrogen under pressure affects fields ranging from condensed matter physics to astrophysics. Compressed liquid hydrogen exhibits a molecular-to-atomic transition. However, despite several experiments, the theoretical debate on the nature of this transition, in particular whether it is a continuous or discontinuous (first-order) transition, has not yet been settled.

In an article in Physical Review Letters, Isaac Tamblyn and Stanimir Bonev of Dalhousie University in Nova Scotia, Canada, employ molecular dynamics to map the phase diagram of dense hydrogen over a large range of temperatures and pressures. Their findings suggest an unreported phase in the liquid with short-ranged orientational order, resulting from a transition that they predict should occur in the liquid above 100GPa. This new phase may explain certain characteristics of the molecular-to-atomic transition, the shape of the melting line, as well as the structure of hydrogen mixtures. The authors argue that a first-order transition is likely, and the new insight provided should spur future experimental work. – Sami Mitra


Subject Areas

Fluid Dynamics

Related Articles

Record Lifetime for a Bubble
Soft Matter

Record Lifetime for a Bubble

Researchers created a gas bubble that lived for 465 days, a world record for this type of object. Read More »

Predicting the Shape of Pointy-Rock Forests
Fluid Dynamics

Predicting the Shape of Pointy-Rock Forests

The shape and curvature evolution of dissolving rocks can be predicted using a new theory. Read More »

Laser Breaks Liquid into Uniform Droplets
Fluid Dynamics

Laser Breaks Liquid into Uniform Droplets

A laser beam hitting a column of liquid controls the droplet pinch-off at the bottom of the stream. Read More »

More Articles