Synopsis

Superconductor optics

Physics 3, s74
In the domain of unusual optical properties, layered superconductors could be viable materials with a negative index of refraction.
V. Golick et al., Phys. Rev. Lett. (2010)

Materials with a negative index of refraction bend and guide a beam of light in unconventional ways—an effect that could be exploited to make perfect lenses. The search for candidate negative-index materials has identified multilayers of high-temperature superconductors as a possibility. Because these materials are anisotropic, the sign of the electrical permittivity (or, more specifically, elements of the permittivity tensor) can change over a certain frequency range, which opens the possibility for negative-index refraction.

Writing in Physical Review Letters, Vladislav Golick and colleagues at Kharkov University in the Ukraine, in collaboration with scientists in the Ukraine, Russia, Japan, and the US, calculate dispersion curves for so-called “surface Josephson-plasma waves” in layered superconductors. They find a branch of these waves above the Josephson plasma frequency, displaying abnormal surface mode behavior. They also identify a window of THz frequencies (above the plasma frequency) where the permittivities switch signs to produce negative-index refraction. At higher frequencies, their model predicts that light incident through a high-index, transparent medium would be completely refracted (no reflection) inside the layered superconductor.

When the superconductor-layer width is below the free path of the surface waves, the refracted waves could be emitted from the edge of the superconductor in the form of a highly collimated beam. With a magnetic field applied parallel to the layers, it should be possible to modulate this channeling effect to make fast switching shutters and mirrors for guiding light. –Saad E. Hebboul


Subject Areas

OpticsSuperconductivity

Related Articles

Inertia of Superconducting Particles in Twisted Trilayer Graphene
Graphene

Inertia of Superconducting Particles in Twisted Trilayer Graphene

The graphene multilayer’s kinetic inductance is both high and tunable, making it a promising material for quantum technologies. Read More »

Laser Cooling is Optimized for Efficiency
Optics

Laser Cooling is Optimized for Efficiency

A new laser-based cooling scheme approaches the maximum efficiency that is theoretically achievable. Read More »

Interferometer Device Sees Text from a Mile Away
Optics

Interferometer Device Sees Text from a Mile Away

A high-resolution imaging system captures distant objects by shining laser light on them and detecting the reflected light. Read More »

More Articles