Synopsis

What would Lorentz say?

Physics 3, s89
The shape of the Fermi surface in a material can explain the counterintuitive effect of longitudinal magnetoresistance
Illustration: Alan Stonebraker

According to the Lorentz force law, a magnetic field directed parallel to the motion of a charge will not exert a force on the charge. In some materials, however, the electrical resistance changes when a magnetic field is applied along the direction of a current, a counterintuitive result called “longitudinal magnetoresistance.”

If the resistance change is of order a few to a few tens of a percent, then one possible explanation for the effect is that the Fermi surface, and hence the electronic properties of the material, are anisotropic: As electrons move with the current, they fluctuate in the transverse direction, experiencing the Lorentz force from the field. Normally, these fluctuations should cancel each other out and make no net contribution to the resistance along the direction of the current, but if the material is anisotropic, this may not be the case.

Writing in Physical Review B, Hridis Pal and Dimitri Maslov of the University of Florida in Gainesville, US, have used the semiclassical Boltzmann equation to derive necessary and sufficient conditions on the anisotropy of the Fermi surface for longitudinal magnetoresistance to be present. Their results should be useful as a starting point for calculating this effect in specific materials and determining whether experimental results can be explained by electronic structure alone or if other mechanisms are at work. – Brad Rubin


Subject Areas

Magnetism

Related Articles

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Ferromagnetic Ferroelectricity from Orbital Ordering
Magnetism

Ferromagnetic Ferroelectricity from Orbital Ordering

Crystals that have both a particular structure and a particular combination of electronic orbitals can be simultaneously ferromagnetic and ferroelectric. Read More »

Diabolical Nanomagnets
Magnetism

Diabolical Nanomagnets

A quantum degeneracy named after a Chinese yo-yo boosts the magnetization lifetime of a short chain of magnetic iron atoms by a factor of 1000. Read More »

More Articles