Synopsis

Anatomy of the Cosmic Ray Energy Spectrum

Physics 4, s154
A new experiment finds structure in the cosmic ray spectrum at very high energies, supporting theories about the origin and propagation of cosmic rays.
Dinoj via Wikipedia Commons

High-energy cosmic rays reaching the Earth are only measured indirectly—through the cascade of particles, called air showers, that result from the collision of cosmic rays with atoms in the atmosphere. The spectrum of cosmic rays thus obtained contains a kink, or “knee,” where the spectrum, which falls steeply with energy, changes slope and begins to fall even more sharply. Past experiments have indicated that the knee results from a decrease in the flux of light nuclei. Astrophysical models indicate that this is the end of light-nuclei cosmic rays originating in our own Milky Way. The same models expect that heavier nuclei in the cosmic rays from our Galaxy will have a similar drop at a higher energy. Above this energy, the remaining cosmic rays should be of extragalactic origin.

Now, the air-shower experiment KASCADE-Grande is reporting in Physical Review Letters the observation of a second “knee.” The analysis separates “electron rich” showers (which should be the result of incoming light-nuclei cosmic rays) from “electron poor” showers (from heavy-nuclei cosmic rays), and finds that the second knee is enhanced in the spectrum from electron-poor events. This finding supports the interpretation that the second knee results from a decrease of the flux of heavy nuclei. Moreover, this structure occurs in the energy range expected for such heavy nuclei by astrophysical models. The result strongly supports these models of the origin of Galactic cosmic rays and gives important input for the study of extragalactic ultrahigh-energy cosmic rays. – Stanley Brown


Subject Areas

Astrophysics

Related Articles

Carbon Monoxide Leaves Cosmic Ice with a Kick
Astrophysics

Carbon Monoxide Leaves Cosmic Ice with a Kick

Molecular “kicks” induced by ultraviolet light are predicted to cause carbon monoxide molecules to be released from the icy layers that cover cosmic dust. Read More »

“Spin” Leaves Its Mark on Some Meteorite Craters
Materials Science

“Spin” Leaves Its Mark on Some Meteorite Craters

Numerical simulations reveal that an impact crater’s shape can depend on the impactor’s spin and its degree of cohesion. Read More »

Tension for a Hubble-Tension Solution
Astrophysics

Tension for a Hubble-Tension Solution

An early-Universe spike in dark energy could resolve a disagreement between two cosmic-expansion-rate measurements, but such a spike may conflict with observations of quasar spectra. Read More »

More Articles