Synopsis

How the Ice Floes Flow

Physics 4, s169
The behavior of the increasingly thin ice found in the Arctic Ocean can be modeled as a two-dimensional, granular gas.
A. Herman, Phys. Rev. E (2011)

For several years, climate change has been implicated in the decline of the thick Arctic Ocean ice that builds up over many seasons and its replacement by thin, seasonal ice. The thinner ice, which has increasingly melted away during the height of summer each year, suffers far more deformation and fracture than thicker ice. Unfortunately, compared to thick, perennial ice, much less is known about the physical properties of this thin, broken ice, which consists largely of separate moving flat chunks or floes.

In a paper in Physical Review E, Agnieszka Herman of the University of Gdansk, Poland, tackles this problem by modeling fragmented ice as a two-dimensional, granular gas. In this picture, the separate ice floes move on the sea surface as rigid and nondeformable entities that lose kinetic energy because of inelastic collisions between them. The author reports that the model qualitatively reproduces the kind of motion and clustering seen in satellite imagery of the Arctic; future work will emphasize more quantitative modeling as better observational data become available, in particular, how floe clustering affects mass and heat transport. Such numerical modeling can contribute vital knowledge of seasonal cycles of sea ice coverage and its involvement with global climate change. – David Voss


Subject Areas

Interdisciplinary PhysicsMaterials Science

Related Articles

Eye Tracking Gets Complex
Interdisciplinary Physics

Eye Tracking Gets Complex

Two research teams have used eye-tracking methods to learn how students approach complex physics problems. Read More »

Designer Disorder in a Crystalline Conflict Zone
Materials Science

Designer Disorder in a Crystalline Conflict Zone

Inducing correlated disorder into a crystalline material could offer a way to tune the material’s phonon properties and thermal conductivity. Read More »

Electron’s Orbital Motion Dominates a Spintronic Effect
Condensed Matter Physics

Electron’s Orbital Motion Dominates a Spintronic Effect

In a two-dimensional material, the orbital motion of electrons, rather than their spin, is the dominant contribution to an effect harnessed by spintronic devices. Read More »

More Articles