Synopsis

Coming off the Grid

Physics 4, s177
Theorists uncover universal effects underlying computer simulations of finite volume systems.
Courtesy Sebastian König, University of Bonn

Lattice gauge theory is the art and science of simulating the dynamics of particles and fields on computers. Most lattice computations approximate continuous space and time by a lattice—or a grid—of a finite size. However, such computations often suffer from “finite volume effects,” where the results depend on the size of the grid. These effects need to be understood and separated out from the results of simulations before one can get meaningful physical answers for the continuum, infinite volume theory of interest.

Writing in Physical Review D, Shahin Bour at the University of Bonn, Germany, and collaborators show that the finite volume corrections to the energy of bound states moving in a finite periodic box have a universal character that is topological in origin, that is, they are independent of the details of the system’s geometry. These corrections contain information about the number and masses of the constituents of the bound state. Bour et al. also compute finite volume corrections to calculations of the scattering of bound states.

The authors verify their analytical results against numerical calculations using effective field theory models and find good agreement. Bour et al.’s results will be useful both for extrapolating lattice quantum chromodynamics calculations to the infinite volume limit, and studying few-body scattering in nuclear and cold atom systems. – Urs Heller and Abishek Agarwal


Subject Areas

Particles and FieldsComputational Physics

Related Articles

Experiment Casts Doubt on Potential Dark Matter Find
Astrophysics

Experiment Casts Doubt on Potential Dark Matter Find

The DAMA/LIBRA experiment’s potential dark matter detection went unconfirmed for 20 years. Now, a similar experiment offers evidence against the result. Read More »

Shining a Light on Chiral Symmetry Breaking in Graphene
Particles and Fields

Shining a Light on Chiral Symmetry Breaking in Graphene

Sensitive photoemission measurements visualize the signatures of a symmetry-broken phase of graphene with carriers of mixed handedness. Read More »

Confirming a Cosmic-Ray Bump
Astrophysics

Confirming a Cosmic-Ray Bump

The DArk Matter Particle Explorer has made the most precise measurements of galactic cosmic rays to date. Read More »

More Articles